| L(s)  = 1  |   − 2·2-s   + 3-s   + 3·4-s     − 2·6-s   + 2·7-s   − 4·8-s   − 4·9-s     − 5·11-s   + 3·12-s   − 13-s   − 4·14-s     + 5·16-s     + 8·18-s       + 2·21-s   + 10·22-s   + 23-s   − 4·24-s     + 2·26-s   − 6·27-s   + 6·28-s   − 3·29-s     + 17·31-s   − 6·32-s   − 5·33-s       − 12·36-s   + 2·37-s     − 39-s  + ⋯ | 
 
| L(s)  = 1  |   − 1.41·2-s   + 0.577·3-s   + 3/2·4-s     − 0.816·6-s   + 0.755·7-s   − 1.41·8-s   − 4/3·9-s     − 1.50·11-s   + 0.866·12-s   − 0.277·13-s   − 1.06·14-s     + 5/4·16-s     + 1.88·18-s       + 0.436·21-s   + 2.13·22-s   + 0.208·23-s   − 0.816·24-s     + 0.392·26-s   − 1.15·27-s   + 1.13·28-s   − 0.557·29-s     + 3.05·31-s   − 1.06·32-s   − 0.870·33-s       − 2·36-s   + 0.328·37-s     − 0.160·39-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 3422500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3422500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(\approx\) | 
             \(1.067839036\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(1.067839036\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−9.207007149496274768084771497279, −9.163989806725291634246632017566, −8.460047583285389607433357308928, −8.345416302891367089728665455621, −7.85083522820591253615344971463, −7.83845619818879868059911359685, −7.43754249445562827816109448725, −6.77693211367059718523087150475, −6.30342451127997648623734366645, −5.98503522449555619853665348234, −5.36115706059252588801950825631, −5.23738465172214104059602453053, −4.47617856205482839765141515619, −4.07417128609313017282858734365, −3.12247841847445430566933046554, −2.84926902413657059545312335432, −2.42693996546770832138538433496, −2.16233851146825294382014338910, −1.11681020921238536563500437236, −0.51467502370781099341159803573, 
0.51467502370781099341159803573, 1.11681020921238536563500437236, 2.16233851146825294382014338910, 2.42693996546770832138538433496, 2.84926902413657059545312335432, 3.12247841847445430566933046554, 4.07417128609313017282858734365, 4.47617856205482839765141515619, 5.23738465172214104059602453053, 5.36115706059252588801950825631, 5.98503522449555619853665348234, 6.30342451127997648623734366645, 6.77693211367059718523087150475, 7.43754249445562827816109448725, 7.83845619818879868059911359685, 7.85083522820591253615344971463, 8.345416302891367089728665455621, 8.460047583285389607433357308928, 9.163989806725291634246632017566, 9.207007149496274768084771497279