Invariants
| Base field: | $\F_{79}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $1 - 3 x + 59 x^{2} - 237 x^{3} + 6241 x^{4}$ | 
| Frobenius angles: | $\pm0.274588503434$, $\pm0.659968640294$ | 
| Angle rank: | $2$ (numerical) | 
| Number field: | 4.0.1106125.1 | 
| Galois group: | $D_{4}$ | 
| Jacobians: | $270$ | 
| Isomorphism classes: | 270 | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6061$ | $39645001$ | $242984708131$ | $1517778931309245$ | $9468609558350750896$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $77$ | $6351$ | $492833$ | $38967283$ | $3077164772$ | $243086036451$ | $19203903703523$ | $1517108796116563$ | $119851595240254427$ | $9468276088817802606$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 270 curves (of which all are hyperelliptic):
- $y^2=20 x^6+43 x^5+27 x^4+64 x^3+77 x^2+7 x+19$
 - $y^2=37 x^6+3 x^5+59 x^4+76 x^3+56 x^2+51 x+51$
 - $y^2=38 x^6+41 x^5+35 x^4+16 x^3+21 x^2+68 x+77$
 - $y^2=16 x^6+57 x^5+10 x^4+32 x^3+64 x^2+52 x+7$
 - $y^2=24 x^6+70 x^5+22 x^4+23 x^3+78 x^2+58 x+51$
 - $y^2=34 x^6+34 x^5+65 x^4+66 x^3+50 x^2+59 x+40$
 - $y^2=21 x^6+71 x^5+61 x^4+56 x^3+49 x^2+56 x+50$
 - $y^2=22 x^6+75 x^5+29 x^4+42 x^3+26 x^2+49 x+13$
 - $y^2=13 x^6+53 x^5+26 x^4+64 x^3+50 x^2+56 x+37$
 - $y^2=36 x^6+38 x^5+76 x^4+48 x^3+41 x^2+60 x+6$
 - $y^2=3 x^6+67 x^5+56 x^4+4 x^3+70 x^2+31 x+41$
 - $y^2=x^6+15 x^5+6 x^4+67 x^3+17 x^2+69 x+5$
 - $y^2=7 x^6+7 x^5+41 x^4+2 x^3+43 x^2+34 x+27$
 - $y^2=58 x^6+61 x^5+22 x^4+10 x^3+61 x^2+52 x+11$
 - $y^2=21 x^6+22 x^5+8 x^4+20 x^3+51 x^2+31 x+29$
 - $y^2=75 x^6+66 x^5+43 x^4+48 x^3+17 x^2+64 x+14$
 - $y^2=39 x^6+29 x^5+45 x^4+24 x^3+72 x^2+14 x+66$
 - $y^2=37 x^6+34 x^5+69 x^4+74 x^3+71 x^2+25 x+1$
 - $y^2=41 x^6+53 x^5+28 x^4+61 x^3+25 x^2+74 x+10$
 - $y^2=3 x^6+53 x^5+19 x^4+9 x^3+54 x^2+64 x+37$
 - and 250 more
 
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$| The endomorphism algebra of this simple isogeny class is 4.0.1106125.1. | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 2.79.d_ch | $2$ | (not in LMFDB) |