Invariants
| Base field: | $\F_{13}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + x + 15 x^{2} + 13 x^{3} + 169 x^{4}$ |
| Frobenius angles: | $\pm0.370469867856$, $\pm0.679487915055$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.40725.3 |
| Galois group: | $D_{4}$ |
| Jacobians: | $16$ |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $199$ | $34029$ | $4812019$ | $822446901$ | $137597422864$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $15$ | $199$ | $2193$ | $28795$ | $370590$ | $4819183$ | $62764521$ | $815798899$ | $10604409279$ | $137858640214$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):
- $y^2=6 x^6+5 x^5+4 x^4+2 x^3+7 x^2+7$
- $y^2=3 x^6+8 x^5+8 x^4+4 x^3+9 x^2+x+5$
- $y^2=4 x^6+10 x^5+3 x^4+8 x^2+3 x+5$
- $y^2=12 x^5+10 x^4+9 x^3+6 x^2+3 x+1$
- $y^2=12 x^6+8 x^5+3 x^4+10 x^3+6 x^2+3 x+12$
- $y^2=3 x^6+7 x^5+6 x^4+3 x^2+3 x$
- $y^2=4 x^6+5 x^5+10 x^4+x^2+6 x+3$
- $y^2=6 x^6+8 x^5+8 x^4+7 x^3+3 x^2+4 x+1$
- $y^2=12 x^6+5 x^5+9 x^4+9 x^3+6 x^2+4 x+6$
- $y^2=x^6+8 x^5+10 x^4+8 x^3+9 x+6$
- $y^2=2 x^6+6 x^5+x^4+5 x^3+10 x+2$
- $y^2=11 x^6+5 x^5+2 x^4+3 x^3+10 x+4$
- $y^2=3 x^6+6 x^5+11 x^4+x^3+3 x^2+2 x+8$
- $y^2=6 x^5+3 x^4+6 x^3+6 x^2+x+12$
- $y^2=7 x^6+5 x^5+11 x^3+x^2+6 x$
- $y^2=4 x^6+2 x^5+2 x^3+6 x^2+10 x+7$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{13}$.
Endomorphism algebra over $\F_{13}$| The endomorphism algebra of this simple isogeny class is 4.0.40725.3. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.13.ab_p | $2$ | 2.169.bd_ur |