Properties

Label 2.3.ab_f
Base Field $\F_{3}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $2$
L-polynomial:  $1 - x + 5 x^{2} - 3 x^{3} + 9 x^{4}$
Frobenius angles:  $\pm0.345303779071$, $\pm0.557095674046$
Angle rank:  $2$ (numerical)
Number field:  4.0.2725.1
Galois group:  $D_{4}$
Jacobians:  1

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 1 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 11 209 869 6061 60016 511841 4542241 43693749 398261831 3484769024

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 3 19 33 75 248 703 2075 6659 20229 59014

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{3}$
The endomorphism algebra of this simple isogeny class is 4.0.2725.1.
All geometric endomorphisms are defined over $\F_{3}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.3.b_f$2$2.9.j_bl