Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 6 x + 90 x^{2} - 258 x^{3} + 1849 x^{4}$ |
| Frobenius angles: | $\pm0.369271787351$, $\pm0.481448180207$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.619600.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $66$ |
| Isomorphism classes: | 88 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1676$ | $3693904$ | $6371664284$ | $11676814710016$ | $21607300954746716$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $38$ | $1994$ | $80138$ | $3415470$ | $146979998$ | $6321388538$ | $271819299650$ | $11688200936734$ | $502592613095414$ | $21611482391430314$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 66 curves (of which all are hyperelliptic):
- $y^2=18 x^6+38 x^5+34 x^4+37 x^3+20 x^2+36 x+27$
- $y^2=22 x^6+30 x^5+4 x^4+12 x^3+41 x^2+5 x+8$
- $y^2=10 x^6+32 x^5+18 x^4+40 x^3+37 x^2+13 x+10$
- $y^2=37 x^6+10 x^5+20 x^4+3 x^3+3 x^2+23 x+40$
- $y^2=32 x^6+18 x^5+9 x^4+20 x^3+27 x^2+30 x+33$
- $y^2=26 x^6+7 x^5+14 x^4+34 x^3+13 x^2+13 x+40$
- $y^2=2 x^6+8 x^5+6 x^4+36 x^3+3 x^2+18 x+35$
- $y^2=39 x^6+37 x^5+6 x^4+2 x^3+4 x^2+31 x+12$
- $y^2=16 x^6+23 x^5+26 x^4+16 x^3+5 x^2+34 x+17$
- $y^2=19 x^6+5 x^5+22 x^4+21 x^3+24 x^2+x+4$
- $y^2=4 x^6+23 x^5+35 x^4+26 x^3+31 x^2+30 x+2$
- $y^2=24 x^6+40 x^5+6 x^4+29 x^3+37 x^2+38 x+7$
- $y^2=39 x^6+9 x^5+33 x^4+8 x^3+9 x^2+13 x+19$
- $y^2=18 x^6+8 x^5+40 x^4+3 x^3+33 x^2+15 x+9$
- $y^2=39 x^6+40 x^5+10 x^4+11 x^3+31 x^2+41 x+30$
- $y^2=34 x^6+11 x^5+14 x^4+18 x^3+32 x^2+37 x+27$
- $y^2=26 x^6+31 x^5+26 x^4+8 x^3+28 x^2+39 x+18$
- $y^2=22 x^6+22 x^5+x^4+36 x^3+3 x^2+27 x+40$
- $y^2=38 x^6+38 x^5+9 x^4+41 x^3+x^2+19 x+31$
- $y^2=18 x^6+22 x^5+2 x^4+41 x^3+2 x^2+36 x+25$
- and 46 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$| The endomorphism algebra of this simple isogeny class is 4.0.619600.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.43.g_dm | $2$ | (not in LMFDB) |