Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 19 x + 211 x^{2} - 1159 x^{3} + 3721 x^{4}$ |
| Frobenius angles: | $\pm0.262088288773$, $\pm0.319708272189$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.570125.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $12$ |
| Isomorphism classes: | 12 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2755$ | $14080805$ | $51905359855$ | $191875201190405$ | $713355493881250000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $43$ | $3783$ | $228673$ | $13857963$ | $844611198$ | $51519832743$ | $3142737158233$ | $191707291563123$ | $11694146200434163$ | $713342913664697398$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):
- $y^2=48 x^6+18 x^5+32 x^4+29 x^3+11 x^2+17 x+21$
- $y^2=10 x^6+55 x^5+27 x^4+10 x^3+6 x^2+46$
- $y^2=38 x^6+35 x^5+7 x^4+8 x^3+58 x^2+18 x+21$
- $y^2=28 x^6+13 x^5+29 x^4+24 x^3+4 x^2+45 x+3$
- $y^2=51 x^6+43 x^5+3 x^4+24 x^3+56 x^2+44 x+37$
- $y^2=23 x^6+18 x^5+19 x^4+19 x^3+17 x^2+12 x+16$
- $y^2=32 x^6+44 x^5+48 x^4+7 x^3+34 x^2+11 x+4$
- $y^2=50 x^6+7 x^5+24 x^4+56 x^3+29 x^2+37 x+58$
- $y^2=16 x^6+27 x^5+8 x^4+48 x^3+38 x^2+40 x+18$
- $y^2=52 x^6+6 x^5+x^4+24 x^3+43 x^2+59 x+34$
- $y^2=6 x^6+32 x^5+35 x^4+34 x^3+23 x^2+34 x+7$
- $y^2=45 x^6+14 x^5+33 x^4+32 x^3+44 x^2+12 x+53$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is 4.0.570125.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.61.t_id | $2$ | (not in LMFDB) |