Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 9 x + 123 x^{2} - 603 x^{3} + 4489 x^{4}$ |
| Frobenius angles: | $\pm0.288608557333$, $\pm0.521212821826$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.1108525.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $144$ |
| Isomorphism classes: | 192 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4001$ | $20905225$ | $90694263899$ | $406053160418125$ | $1822887918809907056$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $59$ | $4655$ | $301547$ | $20150403$ | $1350162224$ | $90458536115$ | $6060704477117$ | $406067620076083$ | $27206534681954489$ | $1822837809203438150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 144 curves (of which all are hyperelliptic):
- $y^2=47 x^6+65 x^5+36 x^4+2 x^3+15 x^2+34 x+6$
- $y^2=28 x^6+48 x^5+14 x^4+40 x^3+6 x^2+34 x+3$
- $y^2=11 x^6+57 x^5+48 x^4+65 x^3+53 x^2+3 x+15$
- $y^2=20 x^6+43 x^5+37 x^4+28 x^3+56 x^2+22 x+21$
- $y^2=61 x^6+60 x^5+45 x^4+35 x^3+17 x^2+23 x+9$
- $y^2=57 x^6+11 x^5+29 x^4+44 x^3+55 x^2+22 x+8$
- $y^2=59 x^6+43 x^5+23 x^4+6 x^3+18 x^2+9 x+45$
- $y^2=40 x^6+40 x^5+45 x^4+54 x^3+57 x^2+19 x+41$
- $y^2=57 x^6+7 x^5+52 x^4+49 x^3+37 x^2+40 x+39$
- $y^2=25 x^6+10 x^5+26 x^4+57 x^3+64 x^2+46 x+1$
- $y^2=56 x^6+62 x^5+17 x^4+53 x^3+38 x^2+64 x+10$
- $y^2=28 x^6+30 x^5+54 x^4+33 x^3+32 x^2+14 x+28$
- $y^2=18 x^6+19 x^5+55 x^4+29 x^3+13 x^2+27 x+12$
- $y^2=46 x^6+39 x^5+6 x^4+28 x^3+62 x^2+25 x+47$
- $y^2=38 x^6+62 x^5+24 x^4+61 x^3+62 x^2+58 x+42$
- $y^2=39 x^6+14 x^5+10 x^4+57 x^3+55 x^2+46 x$
- $y^2=45 x^6+15 x^5+47 x^4+32 x^3+21 x^2+65 x+40$
- $y^2=52 x^6+31 x^5+32 x^4+25 x^3+48 x^2+60 x+3$
- $y^2=31 x^6+59 x^5+15 x^4+24 x^3+65 x^2+62 x+43$
- $y^2=58 x^6+46 x^5+19 x^4+48 x^3+45 x^2+13 x+52$
- and 124 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$| The endomorphism algebra of this simple isogeny class is 4.0.1108525.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.67.j_et | $2$ | (not in LMFDB) |