Properties

Label 2.67.aj_et
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $1 - 9 x + 123 x^{2} - 603 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.288608557333$, $\pm0.521212821826$
Angle rank:  $2$ (numerical)
Number field:  4.0.1108525.2
Galois group:  $D_{4}$
Jacobians:  $144$
Isomorphism classes:  192

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4001$ $20905225$ $90694263899$ $406053160418125$ $1822887918809907056$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $59$ $4655$ $301547$ $20150403$ $1350162224$ $90458536115$ $6060704477117$ $406067620076083$ $27206534681954489$ $1822837809203438150$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 144 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The endomorphism algebra of this simple isogeny class is 4.0.1108525.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.j_et$2$(not in LMFDB)