| L(s) = 1 | + 2·3-s − 2·5-s + 9-s + 6·11-s − 4·15-s − 2·17-s + 2·19-s + 4·23-s + 2·25-s − 4·27-s − 2·29-s + 4·31-s + 12·33-s + 4·37-s − 6·41-s + 6·43-s − 2·45-s − 8·47-s − 6·49-s − 4·51-s − 2·53-s − 12·55-s + 4·57-s − 18·59-s + 4·61-s + 10·67-s + 8·69-s + ⋯ |
| L(s) = 1 | + 1.15·3-s − 0.894·5-s + 1/3·9-s + 1.80·11-s − 1.03·15-s − 0.485·17-s + 0.458·19-s + 0.834·23-s + 2/5·25-s − 0.769·27-s − 0.371·29-s + 0.718·31-s + 2.08·33-s + 0.657·37-s − 0.937·41-s + 0.914·43-s − 0.298·45-s − 1.16·47-s − 6/7·49-s − 0.560·51-s − 0.274·53-s − 1.61·55-s + 0.529·57-s − 2.34·59-s + 0.512·61-s + 1.22·67-s + 0.963·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 18432 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18432 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.479486074\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.479486074\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.6388431548, −15.3387029775, −14.7905923987, −14.4775533748, −14.0661810265, −13.6094598241, −12.9420941202, −12.5864804857, −11.8160826844, −11.3701186067, −11.3115530642, −10.2945362349, −9.65047505782, −9.18403429092, −8.80649502132, −8.27213573288, −7.70769473318, −7.13171606030, −6.56040333903, −5.87967844129, −4.73681815857, −4.20542641223, −3.46088107276, −2.91951872216, −1.56362959378,
1.56362959378, 2.91951872216, 3.46088107276, 4.20542641223, 4.73681815857, 5.87967844129, 6.56040333903, 7.13171606030, 7.70769473318, 8.27213573288, 8.80649502132, 9.18403429092, 9.65047505782, 10.2945362349, 11.3115530642, 11.3701186067, 11.8160826844, 12.5864804857, 12.9420941202, 13.6094598241, 14.0661810265, 14.4775533748, 14.7905923987, 15.3387029775, 15.6388431548