Properties

Label 4-18432-1.1-c1e2-0-1
Degree $4$
Conductor $18432$
Sign $1$
Analytic cond. $1.17524$
Root an. cond. $1.04119$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 2·5-s + 9-s + 6·11-s − 4·15-s − 2·17-s + 2·19-s + 4·23-s + 2·25-s − 4·27-s − 2·29-s + 4·31-s + 12·33-s + 4·37-s − 6·41-s + 6·43-s − 2·45-s − 8·47-s − 6·49-s − 4·51-s − 2·53-s − 12·55-s + 4·57-s − 18·59-s + 4·61-s + 10·67-s + 8·69-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.894·5-s + 1/3·9-s + 1.80·11-s − 1.03·15-s − 0.485·17-s + 0.458·19-s + 0.834·23-s + 2/5·25-s − 0.769·27-s − 0.371·29-s + 0.718·31-s + 2.08·33-s + 0.657·37-s − 0.937·41-s + 0.914·43-s − 0.298·45-s − 1.16·47-s − 6/7·49-s − 0.560·51-s − 0.274·53-s − 1.61·55-s + 0.529·57-s − 2.34·59-s + 0.512·61-s + 1.22·67-s + 0.963·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18432 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18432 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(18432\)    =    \(2^{11} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(1.17524\)
Root analytic conductor: \(1.04119\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 18432,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.479486074\)
\(L(\frac12)\) \(\approx\) \(1.479486074\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3$C_2$ \( 1 - 2 T + p T^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.5.c_c
7$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \) 2.7.a_g
11$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \) 2.11.ag_w
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.13.a_ak
17$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \) 2.17.c_c
19$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.19.ac_ak
23$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.23.ae_o
29$D_{4}$ \( 1 + 2 T - 14 T^{2} + 2 p T^{3} + p^{2} T^{4} \) 2.29.c_ao
31$D_{4}$ \( 1 - 4 T + 6 T^{2} - 4 p T^{3} + p^{2} T^{4} \) 2.31.ae_g
37$D_{4}$ \( 1 - 4 T - 2 T^{2} - 4 p T^{3} + p^{2} T^{4} \) 2.37.ae_ac
41$D_{4}$ \( 1 + 6 T + 50 T^{2} + 6 p T^{3} + p^{2} T^{4} \) 2.41.g_by
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.43.ag_cs
47$D_{4}$ \( 1 + 8 T + 78 T^{2} + 8 p T^{3} + p^{2} T^{4} \) 2.47.i_da
53$D_{4}$ \( 1 + 2 T + 34 T^{2} + 2 p T^{3} + p^{2} T^{4} \) 2.53.c_bi
59$D_{4}$ \( 1 + 18 T + 182 T^{2} + 18 p T^{3} + p^{2} T^{4} \) 2.59.s_ha
61$D_{4}$ \( 1 - 4 T + 46 T^{2} - 4 p T^{3} + p^{2} T^{4} \) 2.61.ae_bu
67$D_{4}$ \( 1 - 10 T + 70 T^{2} - 10 p T^{3} + p^{2} T^{4} \) 2.67.ak_cs
71$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.71.e_bu
73$D_{4}$ \( 1 + 12 T + 102 T^{2} + 12 p T^{3} + p^{2} T^{4} \) 2.73.m_dy
79$D_{4}$ \( 1 + 20 T + 230 T^{2} + 20 p T^{3} + p^{2} T^{4} \) 2.79.u_iw
83$D_{4}$ \( 1 - 2 T - 90 T^{2} - 2 p T^{3} + p^{2} T^{4} \) 2.83.ac_adm
89$D_{4}$ \( 1 + 2 T - 14 T^{2} + 2 p T^{3} + p^{2} T^{4} \) 2.89.c_ao
97$D_{4}$ \( 1 + 4 T + 70 T^{2} + 4 p T^{3} + p^{2} T^{4} \) 2.97.e_cs
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.6388431548, −15.3387029775, −14.7905923987, −14.4775533748, −14.0661810265, −13.6094598241, −12.9420941202, −12.5864804857, −11.8160826844, −11.3701186067, −11.3115530642, −10.2945362349, −9.65047505782, −9.18403429092, −8.80649502132, −8.27213573288, −7.70769473318, −7.13171606030, −6.56040333903, −5.87967844129, −4.73681815857, −4.20542641223, −3.46088107276, −2.91951872216, −1.56362959378, 1.56362959378, 2.91951872216, 3.46088107276, 4.20542641223, 4.73681815857, 5.87967844129, 6.56040333903, 7.13171606030, 7.70769473318, 8.27213573288, 8.80649502132, 9.18403429092, 9.65047505782, 10.2945362349, 11.3115530642, 11.3701186067, 11.8160826844, 12.5864804857, 12.9420941202, 13.6094598241, 14.0661810265, 14.4775533748, 14.7905923987, 15.3387029775, 15.6388431548

Graph of the $Z$-function along the critical line