Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 8 x + 43 x^{2} )( 1 + 2 x + 43 x^{2} )$ |
| $1 - 6 x + 70 x^{2} - 258 x^{3} + 1849 x^{4}$ | |
| Frobenius angles: | $\pm0.291171725172$, $\pm0.548731945757$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $192$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1656$ | $3616704$ | $6342859224$ | $11688840124416$ | $21614445471801816$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $38$ | $1954$ | $79778$ | $3418990$ | $147028598$ | $6321348178$ | $271816660370$ | $11688194466334$ | $502592672519174$ | $21611482607774914$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 192 curves (of which all are hyperelliptic):
- $y^2=34 x^6+19 x^5+28 x^4+3 x^3+7 x^2+20 x+18$
- $y^2=19 x^6+14 x^5+28 x^4+18 x^3+17 x^2+20 x+12$
- $y^2=x^6+15 x^5+16 x^4+8 x^3+31 x^2+11 x+29$
- $y^2=41 x^6+26 x^5+8 x^4+25 x^3+15 x^2+15 x+21$
- $y^2=32 x^6+3 x^5+33 x^4+36 x^3+15 x^2+34 x+4$
- $y^2=x^6+28 x^5+27 x^4+15 x^3+9 x^2+28 x+24$
- $y^2=11 x^6+x^5+23 x^4+35 x^3+17 x^2+8 x+38$
- $y^2=18 x^6+29 x^5+14 x^4+17 x^3+27 x^2+18 x+30$
- $y^2=7 x^6+13 x^5+22 x^4+18 x^3+18 x^2+38 x+41$
- $y^2=2 x^6+31 x^5+29 x^4+13 x^3+4 x^2+31 x+19$
- $y^2=27 x^6+25 x^5+5 x^4+41 x^3+25 x^2+21 x+36$
- $y^2=x^6+18 x^5+8 x^4+17 x^3+20 x^2+29 x+33$
- $y^2=4 x^6+35 x^5+40 x^4+36 x^3+31 x^2+7 x+6$
- $y^2=11 x^6+35 x^5+22 x^4+8 x^3+2 x^2+8 x+28$
- $y^2=40 x^6+21 x^5+31 x^4+25 x^2+28 x+3$
- $y^2=34 x^6+40 x^5+4 x^4+26 x^2+31 x+34$
- $y^2=40 x^6+28 x^5+35 x^4+37 x^3+19 x^2+34 x+21$
- $y^2=5 x^6+18 x^5+41 x^4+39 x^3+21 x^2+4 x+39$
- $y^2=21 x^6+41 x^5+8 x^4+22 x^3+8 x^2+41 x+21$
- $y^2=26 x^6+33 x^5+32 x^4+35 x^3+32 x^2+33 x+26$
- and 172 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$| The isogeny class factors as 1.43.ai $\times$ 1.43.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.