Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 2 x + 34 x^{2} + 106 x^{3} + 2809 x^{4}$ |
| Frobenius angles: | $\pm0.326630458643$, $\pm0.727535697083$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.24982352.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $196$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2952$ | $8076672$ | $22182322824$ | $62327613210624$ | $174873354043248072$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $56$ | $2874$ | $149000$ | $7899086$ | $418161736$ | $22163943402$ | $1174711868344$ | $62259682566814$ | $3299763721827416$ | $174887471468353434$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 196 curves (of which all are hyperelliptic):
- $y^2=40 x^6+20 x^4+43 x^3+20 x^2+50 x+27$
- $y^2=51 x^6+2 x^5+7 x^4+32 x^3+16 x^2+4 x+15$
- $y^2=24 x^6+x^5+14 x^4+22 x^3+30 x^2+32 x+12$
- $y^2=19 x^6+6 x^5+15 x^4+x^3+48 x^2+30 x+16$
- $y^2=18 x^6+10 x^5+3 x^4+51 x^3+22 x^2+37 x+6$
- $y^2=32 x^6+25 x^5+35 x^4+43 x^3+29 x^2+19 x+32$
- $y^2=17 x^6+19 x^5+13 x^4+19 x^3+22 x+15$
- $y^2=12 x^6+15 x^5+50 x^4+4 x^3+20 x^2+38 x+23$
- $y^2=25 x^6+6 x^5+49 x^4+41 x^3+4 x^2+52 x+39$
- $y^2=16 x^6+46 x^5+49 x^4+43 x^3+42 x^2+43 x+16$
- $y^2=19 x^6+32 x^5+25 x^4+x^3+16 x^2+28 x+51$
- $y^2=5 x^6+40 x^5+21 x^4+18 x^3+35 x^2+33 x+36$
- $y^2=38 x^6+46 x^5+8 x^4+2 x^3+45 x^2+35 x+9$
- $y^2=14 x^6+20 x^5+20 x^4+33 x^3+39 x^2+4 x+33$
- $y^2=38 x^6+3 x^5+5 x^4+39 x^3+28 x^2+23 x+15$
- $y^2=19 x^6+10 x^5+33 x^4+51 x^3+27 x^2+47 x+7$
- $y^2=2 x^6+9 x^5+23 x^3+29 x^2+48 x+38$
- $y^2=13 x^6+32 x^5+39 x^4+26 x^3+18 x^2+34 x+6$
- $y^2=3 x^6+41 x^5+24 x^4+19 x^3+25 x^2+47 x+1$
- $y^2=35 x^6+14 x^5+24 x^4+34 x^3+10 x^2+33 x+24$
- and 176 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The endomorphism algebra of this simple isogeny class is 4.0.24982352.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.53.ac_bi | $2$ | (not in LMFDB) |