Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 2 x - 14 x^{2} + 178 x^{3} + 7921 x^{4}$ |
| Frobenius angles: | $\pm0.260544922207$, $\pm0.789555291220$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.237201632.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $392$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $8088$ | $62504064$ | $497423137176$ | $3938448076996608$ | $31181381322137835288$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $92$ | $7890$ | $705596$ | $62771870$ | $5583998812$ | $496981969074$ | $44231322458044$ | $3936588616180798$ | $350356404272012636$ | $31181719923026378130$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 392 curves (of which all are hyperelliptic):
- $y^2=12 x^6+51 x^5+81 x^4+76 x^3+15 x^2+38 x+50$
- $y^2=46 x^6+32 x^5+51 x^4+22 x^3+68 x^2+44 x+44$
- $y^2=51 x^6+62 x^5+19 x^4+49 x^3+87 x^2+47 x+84$
- $y^2=2 x^6+31 x^5+25 x^4+25 x^3+59 x^2+80 x+4$
- $y^2=6 x^6+26 x^5+38 x^4+48 x^3+3 x^2+56 x+51$
- $y^2=29 x^6+78 x^5+4 x^4+66 x^3+12 x^2+65 x+35$
- $y^2=29 x^6+76 x^5+31 x^4+6 x^3+25 x^2+84 x+33$
- $y^2=15 x^6+42 x^5+53 x^4+48 x^3+66 x^2+69 x+41$
- $y^2=3 x^6+67 x^5+3 x^4+56 x^3+37 x^2+11 x+1$
- $y^2=53 x^6+60 x^5+13 x^4+37 x^3+11 x^2+64 x+63$
- $y^2=48 x^6+27 x^5+38 x^4+x^3+75 x^2+60 x+54$
- $y^2=28 x^6+44 x^5+7 x^4+67 x^3+86 x^2+80 x+81$
- $y^2=11 x^6+68 x^5+27 x^4+39 x^3+63 x^2+87 x+20$
- $y^2=43 x^6+81 x^5+82 x^4+70 x^3+38 x^2+15 x+82$
- $y^2=65 x^6+76 x^5+64 x^4+22 x^3+3 x^2+36 x+6$
- $y^2=47 x^6+29 x^5+5 x^4+76 x^3+28 x^2+16 x+57$
- $y^2=15 x^6+10 x^5+53 x^4+64 x^3+70 x^2+32 x+3$
- $y^2=12 x^6+48 x^5+56 x^4+80 x^3+58 x^2+80 x+8$
- $y^2=85 x^6+69 x^5+19 x^4+27 x^3+56 x^2+15 x+82$
- $y^2=x^6+72 x^5+x^4+79 x^3+86 x^2+7 x+7$
- and 372 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$| The endomorphism algebra of this simple isogeny class is 4.0.237201632.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.89.ac_ao | $2$ | (not in LMFDB) |