Properties

Label 2.67.ak_cs
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $1 - 10 x + 70 x^{2} - 670 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.156402225384$, $\pm0.587304245040$
Angle rank:  $2$ (numerical)
Number field:  4.0.29339384.1
Galois group:  $D_{4}$
Jacobians:  $340$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3880$ $20331200$ $90185373640$ $406054726400000$ $1823011909984611400$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $58$ $4530$ $299854$ $20150478$ $1350254058$ $90458927490$ $6060711685534$ $406067729473758$ $27206534696359258$ $1822837801524005650$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 340 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The endomorphism algebra of this simple isogeny class is 4.0.29339384.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.k_cs$2$(not in LMFDB)