Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 10 x + 70 x^{2} - 670 x^{3} + 4489 x^{4}$ |
| Frobenius angles: | $\pm0.156402225384$, $\pm0.587304245040$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.29339384.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $340$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3880$ | $20331200$ | $90185373640$ | $406054726400000$ | $1823011909984611400$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $58$ | $4530$ | $299854$ | $20150478$ | $1350254058$ | $90458927490$ | $6060711685534$ | $406067729473758$ | $27206534696359258$ | $1822837801524005650$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 340 curves (of which all are hyperelliptic):
- $y^2=36 x^6+18 x^5+49 x^4+53 x^3+41 x^2+14 x+17$
- $y^2=57 x^6+6 x^5+8 x^4+7 x^3+14 x^2+39 x+41$
- $y^2=15 x^6+17 x^5+59 x^4+47 x^3+66 x^2+34 x+42$
- $y^2=34 x^6+44 x^5+14 x^4+2 x^3+46 x^2+21 x+6$
- $y^2=6 x^6+61 x^5+19 x^4+39 x^3+57 x^2+62 x+5$
- $y^2=59 x^6+31 x^5+27 x^4+47 x^3+19 x^2+40 x+51$
- $y^2=30 x^6+49 x^5+17 x^4+60 x^3+65 x^2+6 x+51$
- $y^2=31 x^6+31 x^5+29 x^4+22 x^3+29 x^2+50 x+27$
- $y^2=32 x^6+9 x^5+8 x^4+57 x^3+21 x^2+26 x+16$
- $y^2=5 x^6+58 x^5+38 x^4+50 x^3+60 x^2+60 x+34$
- $y^2=2 x^5+3 x^4+18 x^3+13 x^2+60 x+37$
- $y^2=32 x^6+11 x^5+3 x^4+39 x^3+44 x^2+46 x+24$
- $y^2=39 x^6+24 x^5+26 x^4+3 x^3+11 x^2+20 x+25$
- $y^2=59 x^6+53 x^5+52 x^4+11 x^3+22 x^2+3 x+51$
- $y^2=5 x^6+51 x^5+64 x^4+10 x^3+8 x^2+44 x+19$
- $y^2=45 x^6+31 x^5+34 x^4+27 x^3+33 x^2+28 x+59$
- $y^2=64 x^6+9 x^5+14 x^4+11 x^3+62 x^2+59 x+2$
- $y^2=28 x^6+64 x^5+15 x^4+52 x^3+23 x^2+40 x+63$
- $y^2=66 x^6+32 x^5+66 x^4+x^3+44 x^2+61 x+52$
- $y^2=35 x^6+10 x^5+18 x^3+52 x^2+45 x+44$
- and 320 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$| The endomorphism algebra of this simple isogeny class is 4.0.29339384.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.67.k_cs | $2$ | (not in LMFDB) |