Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 2 x - 90 x^{2} - 166 x^{3} + 6889 x^{4}$ |
| Frobenius angles: | $\pm0.115659554737$, $\pm0.808794169619$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.73446488.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $120$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6632$ | $46211776$ | $326343669128$ | $2252699123357696$ | $15515671858954889992$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $82$ | $6706$ | $570742$ | $47466894$ | $3938946882$ | $326942051266$ | $27136054535686$ | $2252292315624798$ | $186940256678114290$ | $15516041186570339346$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=29 x^6+8 x^5+35 x^4+28 x^3+57 x^2+67 x+11$
- $y^2=57 x^6+15 x^5+35 x^4+29 x^3+8 x^2+4 x+7$
- $y^2=35 x^6+51 x^5+67 x^4+21 x^3+38 x^2+16 x+67$
- $y^2=5 x^6+61 x^5+37 x^4+46 x^3+23 x^2+51 x+13$
- $y^2=x^6+33 x^5+3 x^4+78 x^3+45 x^2+41 x+66$
- $y^2=74 x^6+29 x^5+81 x^4+52 x^3+58 x^2+40 x+80$
- $y^2=75 x^6+51 x^5+37 x^4+75 x^3+27 x+73$
- $y^2=61 x^6+x^5+19 x^4+79 x^3+46 x^2+76 x+46$
- $y^2=39 x^6+41 x^5+14 x^4+66 x^3+8 x^2+42 x+73$
- $y^2=7 x^6+x^5+38 x^4+45 x^3+50 x^2+71 x+19$
- $y^2=6 x^6+79 x^5+60 x^4+64 x^3+39 x^2+58$
- $y^2=35 x^6+75 x^5+51 x^4+35 x^3+10 x^2+60 x+33$
- $y^2=45 x^6+12 x^5+78 x^4+26 x^3+50 x^2+17 x+29$
- $y^2=78 x^6+76 x^5+42 x^4+59 x^3+13 x^2+70 x+6$
- $y^2=5 x^6+67 x^5+7 x^4+72 x^3+64 x^2+34 x+68$
- $y^2=22 x^6+61 x^5+19 x^4+17 x^3+75 x^2+24 x+47$
- $y^2=51 x^6+54 x^5+62 x^4+40 x^3+24 x^2+51 x+66$
- $y^2=78 x^6+36 x^5+67 x^4+68 x^3+34 x^2+24 x+67$
- $y^2=34 x^6+27 x^5+73 x^4+17 x^3+56 x^2+30 x+69$
- $y^2=51 x^6+79 x^5+52 x^4+28 x^3+6 x^2+14 x+22$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$| The endomorphism algebra of this simple isogeny class is 4.0.73446488.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.83.c_adm | $2$ | (not in LMFDB) |