Properties

Label 2.83.ac_adm
Base field $\F_{83}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{83}$
Dimension:  $2$
L-polynomial:  $1 - 2 x - 90 x^{2} - 166 x^{3} + 6889 x^{4}$
Frobenius angles:  $\pm0.115659554737$, $\pm0.808794169619$
Angle rank:  $2$ (numerical)
Number field:  4.0.73446488.1
Galois group:  $D_{4}$
Jacobians:  $120$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $6632$ $46211776$ $326343669128$ $2252699123357696$ $15515671858954889992$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $82$ $6706$ $570742$ $47466894$ $3938946882$ $326942051266$ $27136054535686$ $2252292315624798$ $186940256678114290$ $15516041186570339346$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{83}$.

Endomorphism algebra over $\F_{83}$
The endomorphism algebra of this simple isogeny class is 4.0.73446488.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.83.c_adm$2$(not in LMFDB)