Properties

Label 2.31.ae_g
Base field $\F_{31}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{31}$
Dimension:  $2$
L-polynomial:  $1 - 4 x + 6 x^{2} - 124 x^{3} + 961 x^{4}$
Frobenius angles:  $\pm0.160720718826$, $\pm0.672580684872$
Angle rank:  $2$ (numerical)
Number field:  4.0.2376000.2
Galois group:  $D_{4}$
Jacobians:  $112$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $840$ $920640$ $876725640$ $854663255040$ $820006173525000$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $28$ $958$ $29428$ $925438$ $28642348$ $887503678$ $27513122308$ $852892865278$ $26439613740988$ $819628305355198$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{31}$.

Endomorphism algebra over $\F_{31}$
The endomorphism algebra of this simple isogeny class is 4.0.2376000.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.31.e_g$2$(not in LMFDB)