Invariants
Base field: | $\F_{17}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 2 x + 2 x^{2} + 34 x^{3} + 289 x^{4}$ |
Frobenius angles: | $\pm0.304860896655$, $\pm0.804860896655$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{33})\) |
Galois group: | $C_2^2$ |
Jacobians: | $32$ |
Isomorphism classes: | 62 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $328$ | $83968$ | $24623944$ | $7050625024$ | $2012365175368$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $20$ | $290$ | $5012$ | $84414$ | $1417300$ | $24137570$ | $410285140$ | $6975693694$ | $118588850324$ | $2015993900450$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=14 x^6+13 x^5+13 x^3+7 x^2+11 x+11$
- $y^2=14 x^6+15 x^5+3 x^4+15 x^3+7 x^2+10 x+4$
- $y^2=9 x^5+15 x^4+2 x^3+4 x^2+6 x+5$
- $y^2=8 x^6+16 x^5+8 x^4+8 x^3+12 x^2+12 x$
- $y^2=9 x^6+5 x^5+x^4+13 x^3+2 x^2+13 x+12$
- $y^2=2 x^5+7 x^4+5 x^3+15 x^2+8 x+14$
- $y^2=8 x^6+11 x^5+15 x^4+8 x^3+11 x^2+10 x+2$
- $y^2=6 x^6+9 x^5+9 x^4+16 x^2+8 x+11$
- $y^2=15 x^6+7 x^5+13 x^4+6 x^3+11 x^2+2 x+10$
- $y^2=5 x^6+6 x^5+11 x^4+2 x^3+4 x^2+2 x+7$
- $y^2=7 x^6+2 x^5+3 x^4+x^3+2 x^2+14 x+1$
- $y^2=13 x^6+16 x^3+13 x^2+13 x+8$
- $y^2=8 x^6+6 x^5+4 x^4+13 x^3+11 x^2+15 x+12$
- $y^2=x^6+7 x^4+4 x^3+x^2+8 x+3$
- $y^2=12 x^6+11 x^5+15 x^4+15 x^3+7 x^2+3 x+14$
- $y^2=5 x^5+8 x^4+8 x^3+14 x^2+15 x+10$
- $y^2=7 x^6+8 x^5+2 x^4+x^3+15 x^2+2 x$
- $y^2=10 x^6+13 x^5+14 x^4+9 x^3+4 x^2+11 x+4$
- $y^2=3 x^6+4 x^4+3 x^3+7 x^2+15 x+2$
- $y^2=5 x^6+4 x^5+9 x^3+11 x$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17^{4}}$.
Endomorphism algebra over $\F_{17}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{33})\). |
The base change of $A$ to $\F_{17^{4}}$ is 1.83521.re 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-33}) \)$)$ |
- Endomorphism algebra over $\F_{17^{2}}$
The base change of $A$ to $\F_{17^{2}}$ is the simple isogeny class 2.289.a_re and its endomorphism algebra is \(\Q(i, \sqrt{33})\).
Base change
This is a primitive isogeny class.