L(s) = 1 | − 2·3-s − 5-s − 8·7-s + 3·9-s − 2·11-s + 4·13-s + 2·15-s − 4·17-s − 7·19-s + 16·21-s + 6·23-s − 10·27-s − 5·29-s + 2·31-s + 4·33-s + 8·35-s − 4·37-s − 8·39-s + 6·41-s + 6·43-s − 3·45-s + 34·49-s + 8·51-s − 10·53-s + 2·55-s + 14·57-s + 3·59-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 0.447·5-s − 3.02·7-s + 9-s − 0.603·11-s + 1.10·13-s + 0.516·15-s − 0.970·17-s − 1.60·19-s + 3.49·21-s + 1.25·23-s − 1.92·27-s − 0.928·29-s + 0.359·31-s + 0.696·33-s + 1.35·35-s − 0.657·37-s − 1.28·39-s + 0.937·41-s + 0.914·43-s − 0.447·45-s + 34/7·49-s + 1.12·51-s − 1.37·53-s + 0.269·55-s + 1.85·57-s + 0.390·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2310400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2310400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.392813459486385073392930453541, −8.861817256456531708177074550795, −8.810807804624192130826012710379, −7.912008019633663019795855793100, −7.54933103379988826327758389596, −7.11604849509614428722895249577, −6.60733314705082890815393328489, −6.35779675985696740922609640070, −6.11183702704466892374436785412, −5.89929474360026346010270530637, −5.09008931674576238279297334464, −4.75308215230347394487865147496, −4.00517279255826453743088254989, −3.57104816470833818315872683285, −3.54070746346573287237937288943, −2.60487759655148434030595759890, −2.21538974500818549052233388950, −1.02783145871320189576730697162, 0, 0,
1.02783145871320189576730697162, 2.21538974500818549052233388950, 2.60487759655148434030595759890, 3.54070746346573287237937288943, 3.57104816470833818315872683285, 4.00517279255826453743088254989, 4.75308215230347394487865147496, 5.09008931674576238279297334464, 5.89929474360026346010270530637, 6.11183702704466892374436785412, 6.35779675985696740922609640070, 6.60733314705082890815393328489, 7.11604849509614428722895249577, 7.54933103379988826327758389596, 7.912008019633663019795855793100, 8.810807804624192130826012710379, 8.861817256456531708177074550795, 9.392813459486385073392930453541