Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 7 x - 40 x^{2} - 623 x^{3} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.0456819038149$, $\pm0.712348570482$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-307})\) |
Galois group: | $C_2^2$ |
Jacobians: | $57$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7252$ | $61729024$ | $494833461136$ | $3936638874649600$ | $31180930319283417652$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $83$ | $7793$ | $701918$ | $62743041$ | $5583918043$ | $496979453486$ | $44231341049587$ | $3936588680856001$ | $350356403055062222$ | $31181719938794004353$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 57 curves (of which all are hyperelliptic):
- $y^2=58 x^6+36 x^5+46 x^4+78 x^3+62 x^2+2 x+79$
- $y^2=76 x^5+68 x^4+19 x^3+57 x^2+69 x+57$
- $y^2=34 x^6+52 x^5+47 x^4+24 x^3+41 x^2+29 x+86$
- $y^2=56 x^6+5 x^4+45 x^3+77 x^2+49 x+29$
- $y^2=29 x^6+59 x^5+60 x^4+4 x^3+17 x^2+9 x+29$
- $y^2=15 x^6+83 x^5+49 x^4+37 x^3+37 x^2+79 x+3$
- $y^2=42 x^6+27 x^5+45 x^4+16 x^3+74 x^2+22 x+3$
- $y^2=55 x^6+22 x^5+73 x^4+31 x^3+41 x^2+57 x+65$
- $y^2=83 x^6+78 x^5+30 x^4+51 x^3+67 x^2+32 x+12$
- $y^2=12 x^6+18 x^5+50 x^4+19 x^3+83 x^2+29 x+21$
- $y^2=33 x^6+88 x^5+40 x^4+19 x^3+18 x^2+44 x+60$
- $y^2=15 x^6+30 x^5+33 x^4+5 x^3+64 x^2+27 x+20$
- $y^2=43 x^6+70 x^5+30 x^4+75 x^3+40 x^2+40 x+44$
- $y^2=6 x^6+72 x^5+77 x^4+52 x^3+16 x^2+44 x+16$
- $y^2=87 x^6+62 x^5+72 x^4+43 x^3+28 x^2+62$
- $y^2=17 x^6+47 x^5+55 x^4+53 x^3+81 x^2+26 x+76$
- $y^2=56 x^6+33 x^5+21 x^4+65 x^3+28 x+50$
- $y^2=59 x^6+74 x^5+11 x^4+65 x^3+16 x^2+23 x+27$
- $y^2=79 x^6+68 x^5+53 x^4+20 x^3+34 x^2+53 x+62$
- $y^2=39 x^6+67 x^5+84 x^4+16 x^3+58 x^2+53 x+45$
- and 37 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89^{3}}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-307})\). |
The base change of $A$ to $\F_{89^{3}}$ is 1.704969.acgs 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-307}) \)$)$ |
Base change
This is a primitive isogeny class.