Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 14 x + 83 x^{2} )^{2}$ |
| $1 - 28 x + 362 x^{2} - 2324 x^{3} + 6889 x^{4}$ | |
| Frobenius angles: | $\pm0.221078141621$, $\pm0.221078141621$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $26$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 5, 7$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4900$ | $47059600$ | $327790600900$ | $2253514829440000$ | $15516976384692422500$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $56$ | $6830$ | $573272$ | $47484078$ | $3939278056$ | $326941559390$ | $27136047888712$ | $2252292090286558$ | $186940253538981656$ | $15516041174779787150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 26 curves (of which all are hyperelliptic):
- $y^2=36 x^6+81 x^5+17 x^4+12 x^3+38 x^2+59 x+25$
- $y^2=45 x^6+69 x^5+30 x^4+10 x^3+30 x^2+69 x+45$
- $y^2=17 x^6+60 x^5+15 x^4+38 x^3+32 x^2+13 x+37$
- $y^2=30 x^6+32 x^4+32 x^2+30$
- $y^2=34 x^6+24 x^5+43 x^4+59 x^3+43 x^2+24 x+34$
- $y^2=62 x^6+79 x^5+x^4+82 x^3+41 x^2+82 x+13$
- $y^2=82 x^6+73 x^5+24 x^4+15 x^3+62 x^2+52 x+66$
- $y^2=46 x^6+36 x^5+55 x^4+55 x^3+55 x^2+36 x+46$
- $y^2=21 x^6+6 x^5+65 x^4+50 x^3+69 x^2+57 x+13$
- $y^2=58 x^6+30 x^5+76 x^4+6 x^3+43 x^2+46 x+62$
- $y^2=6 x^6+43 x^5+69 x^4+54 x^3+9 x^2+58 x+5$
- $y^2=73 x^6+27 x^5+47 x^4+5 x^3+24 x^2+50 x+68$
- $y^2=60 x^6+42 x^5+3 x^4+79 x^3+3 x^2+42 x+60$
- $y^2=55 x^6+65 x^4+65 x^2+55$
- $y^2=19 x^6+56 x^5+42 x^4+46 x^3+35 x^2+10 x+60$
- $y^2=50 x^6+37 x^5+46 x^4+22 x^3+34 x^2+29 x+79$
- $y^2=78 x^6+69 x^5+56 x^4+82 x^3+2 x^2+76 x+14$
- $y^2=53 x^6+4 x^5+57 x^4+3 x^3+3 x^2+18 x+24$
- $y^2=8 x^6+62 x^5+14 x^4+53 x^3+67 x^2+20 x+20$
- $y^2=82 x^6+68 x^5+46 x^4+30 x^3+41 x^2+27 x+71$
- $y^2=44 x^6+66 x^5+53 x^4+75 x^3+11 x^2+67 x$
- $y^2=71 x^6+78 x^5+71 x^4+47 x^3+27 x^2+24 x+26$
- $y^2=51 x^6+17 x^5+69 x^4+54 x^3+69 x^2+17 x+51$
- $y^2=43 x^6+37 x^5+21 x^4+77 x^3+21 x^2+37 x+43$
- $y^2=6 x^6+24 x^5+32 x^4+12 x^3+36 x^2+68 x+15$
- $y^2=30 x^6+29 x^5+22 x^4+12 x^3+78 x^2+x+8$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$| The isogeny class factors as 1.83.ao 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-34}) \)$)$ |
Base change
This is a primitive isogeny class.