L(s) = 1 | − 2-s + 4-s − 8-s + 4·9-s + 2·13-s + 16-s − 6·17-s − 4·18-s + 25-s − 2·26-s + 6·29-s − 32-s + 6·34-s + 4·36-s + 10·37-s + 8·41-s + 8·49-s − 50-s + 2·52-s + 4·53-s − 6·58-s − 4·61-s + 64-s − 6·68-s − 4·72-s + 14·73-s − 10·74-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.353·8-s + 4/3·9-s + 0.554·13-s + 1/4·16-s − 1.45·17-s − 0.942·18-s + 1/5·25-s − 0.392·26-s + 1.11·29-s − 0.176·32-s + 1.02·34-s + 2/3·36-s + 1.64·37-s + 1.24·41-s + 8/7·49-s − 0.141·50-s + 0.277·52-s + 0.549·53-s − 0.787·58-s − 0.512·61-s + 1/8·64-s − 0.727·68-s − 0.471·72-s + 1.63·73-s − 1.16·74-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1095200 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1095200 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.763965990\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.763965990\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.052700521306068355154467815525, −7.73321545421056499592818474766, −7.14402187319768748175862396884, −6.76038559340692364196352977609, −6.61788361625359473231816104581, −5.87955122844590609701218563093, −5.62302290497212828025289457609, −4.73701999652650432772590103483, −4.29093457310253980774409643650, −4.16581696021772974346531909187, −3.31819034784938646848156966615, −2.59518453351647994257156665957, −2.19267291046544709938962882663, −1.35439208845526395610118875502, −0.74519222623794018928794081655,
0.74519222623794018928794081655, 1.35439208845526395610118875502, 2.19267291046544709938962882663, 2.59518453351647994257156665957, 3.31819034784938646848156966615, 4.16581696021772974346531909187, 4.29093457310253980774409643650, 4.73701999652650432772590103483, 5.62302290497212828025289457609, 5.87955122844590609701218563093, 6.61788361625359473231816104581, 6.76038559340692364196352977609, 7.14402187319768748175862396884, 7.73321545421056499592818474766, 8.052700521306068355154467815525