Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 8 x + 29 x^{2} )( 1 + 2 x + 29 x^{2} )$ |
$1 - 6 x + 42 x^{2} - 174 x^{3} + 841 x^{4}$ | |
Frobenius angles: | $\pm0.233506187634$, $\pm0.559453748998$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $56$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $704$ | $749056$ | $595280576$ | $500537196544$ | $421017336876224$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $24$ | $890$ | $24408$ | $707694$ | $20526264$ | $594859466$ | $17249514936$ | $500245010014$ | $14507146314072$ | $420707200977050$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=13 x^6+16 x^5+25 x^4+19 x^3+23 x^2+13 x+4$
- $y^2=18 x^6+2 x^5+16 x^4+18 x^3+14 x^2+26 x+24$
- $y^2=19 x^6+2 x^5+19 x^4+23 x^3+21 x^2+14 x+8$
- $y^2=10 x^6+14 x^5+7 x^4+26 x^3+23 x^2+8 x+2$
- $y^2=5 x^6+6 x^5+11 x^4+22 x^3+10 x^2+4 x+25$
- $y^2=8 x^5+12 x^4+12 x^3+22 x^2+8 x+17$
- $y^2=17 x^6+9 x^5+17 x^4+8 x^3+16 x^2+13 x+22$
- $y^2=2 x^6+6 x^5+3 x^4+15 x^3+3 x^2+17 x+22$
- $y^2=15 x^6+12 x^5+2 x^4+18 x^3+14 x^2+9 x+20$
- $y^2=11 x^6+23 x^5+4 x^4+28 x^3+4 x^2+23 x+13$
- $y^2=17 x^6+16 x^5+5 x^4+9 x^3+19 x^2+7 x+4$
- $y^2=12 x^6+6 x^5+4 x^4+25 x^3+4 x^2+27 x+7$
- $y^2=9 x^6+17 x^5+15 x^4+10 x^3+7 x^2+6 x+4$
- $y^2=6 x^6+17 x^5+23 x^4+11 x^3+28 x^2+12$
- $y^2=4 x^5+28 x^3+2 x^2+12 x+20$
- $y^2=21 x^6+8 x^5+2 x^4+24 x^3+19 x^2+6 x+15$
- $y^2=9 x^6+24 x^5+18 x^4+25 x^3+27 x^2+27 x+11$
- $y^2=2 x^6+9 x^5+13 x^4+19 x^3+4 x^2+24 x+9$
- $y^2=19 x^6+25 x^5+19 x^4+23 x^3+18 x^2+18 x+19$
- $y^2=26 x^5+20 x^4+12 x^3+22 x^2+16 x+14$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$The isogeny class factors as 1.29.ai $\times$ 1.29.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.29.ak_cw | $2$ | (not in LMFDB) |
2.29.g_bq | $2$ | (not in LMFDB) |
2.29.k_cw | $2$ | (not in LMFDB) |