Properties

Label 2-8640-1.1-c1-0-67
Degree $2$
Conductor $8640$
Sign $-1$
Analytic cond. $68.9907$
Root an. cond. $8.30606$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 4·7-s + 2·11-s − 4·13-s − 17-s + 5·19-s − 5·23-s + 25-s + 8·29-s + 7·31-s + 4·35-s + 6·37-s − 6·41-s + 2·43-s − 8·47-s + 9·49-s + 9·53-s − 2·55-s + 4·59-s − 13·61-s + 4·65-s + 10·67-s + 6·71-s − 6·73-s − 8·77-s + 9·79-s − 17·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.51·7-s + 0.603·11-s − 1.10·13-s − 0.242·17-s + 1.14·19-s − 1.04·23-s + 1/5·25-s + 1.48·29-s + 1.25·31-s + 0.676·35-s + 0.986·37-s − 0.937·41-s + 0.304·43-s − 1.16·47-s + 9/7·49-s + 1.23·53-s − 0.269·55-s + 0.520·59-s − 1.66·61-s + 0.496·65-s + 1.22·67-s + 0.712·71-s − 0.702·73-s − 0.911·77-s + 1.01·79-s − 1.86·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8640\)    =    \(2^{6} \cdot 3^{3} \cdot 5\)
Sign: $-1$
Analytic conductor: \(68.9907\)
Root analytic conductor: \(8.30606\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8640,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 9 T + p T^{2} \) 1.79.aj
83 \( 1 + 17 T + p T^{2} \) 1.83.r
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.39876087643947307363818415975, −6.56456120519014125283924210247, −6.37581007247427526629920238830, −5.33132767734034622392466185980, −4.55156179433330296239918727357, −3.81751554759938339802856258326, −3.04764875897694377170889535956, −2.46788403321754892094543922736, −1.04061506504350801766091790120, 0, 1.04061506504350801766091790120, 2.46788403321754892094543922736, 3.04764875897694377170889535956, 3.81751554759938339802856258326, 4.55156179433330296239918727357, 5.33132767734034622392466185980, 6.37581007247427526629920238830, 6.56456120519014125283924210247, 7.39876087643947307363818415975

Graph of the $Z$-function along the critical line