Properties

Label 2-8190-1.1-c1-0-114
Degree $2$
Conductor $8190$
Sign $-1$
Analytic cond. $65.3974$
Root an. cond. $8.08687$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s + 7-s + 8-s + 10-s − 4·11-s − 13-s + 14-s + 16-s − 2·17-s − 4·19-s + 20-s − 4·22-s − 8·23-s + 25-s − 26-s + 28-s + 2·29-s + 4·31-s + 32-s − 2·34-s + 35-s + 10·37-s − 4·38-s + 40-s + 6·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.377·7-s + 0.353·8-s + 0.316·10-s − 1.20·11-s − 0.277·13-s + 0.267·14-s + 1/4·16-s − 0.485·17-s − 0.917·19-s + 0.223·20-s − 0.852·22-s − 1.66·23-s + 1/5·25-s − 0.196·26-s + 0.188·28-s + 0.371·29-s + 0.718·31-s + 0.176·32-s − 0.342·34-s + 0.169·35-s + 1.64·37-s − 0.648·38-s + 0.158·40-s + 0.937·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8190\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(65.3974\)
Root analytic conductor: \(8.08687\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8190,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
13 \( 1 + T \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.62804721674456759552084853115, −6.47231625830282368194125388192, −6.10569279307278453702672576056, −5.36818941203578845860141412090, −4.54456498639708041776749270628, −4.20250764886632416003395697426, −2.89457772170522130166690257095, −2.42893179723478132752768103898, −1.55300350591201351517527159773, 0, 1.55300350591201351517527159773, 2.42893179723478132752768103898, 2.89457772170522130166690257095, 4.20250764886632416003395697426, 4.54456498639708041776749270628, 5.36818941203578845860141412090, 6.10569279307278453702672576056, 6.47231625830282368194125388192, 7.62804721674456759552084853115

Graph of the $Z$-function along the critical line