Properties

Label 2-755-1.1-c1-0-16
Degree $2$
Conductor $755$
Sign $1$
Analytic cond. $6.02870$
Root an. cond. $2.45534$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3·3-s + 2·4-s + 5-s − 6·6-s − 7-s + 6·9-s + 2·10-s − 6·12-s + 6·13-s − 2·14-s − 3·15-s − 4·16-s + 4·17-s + 12·18-s − 19-s + 2·20-s + 3·21-s + 9·23-s + 25-s + 12·26-s − 9·27-s − 2·28-s + 5·29-s − 6·30-s − 31-s − 8·32-s + ⋯
L(s)  = 1  + 1.41·2-s − 1.73·3-s + 4-s + 0.447·5-s − 2.44·6-s − 0.377·7-s + 2·9-s + 0.632·10-s − 1.73·12-s + 1.66·13-s − 0.534·14-s − 0.774·15-s − 16-s + 0.970·17-s + 2.82·18-s − 0.229·19-s + 0.447·20-s + 0.654·21-s + 1.87·23-s + 1/5·25-s + 2.35·26-s − 1.73·27-s − 0.377·28-s + 0.928·29-s − 1.09·30-s − 0.179·31-s − 1.41·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 755 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 755 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(755\)    =    \(5 \cdot 151\)
Sign: $1$
Analytic conductor: \(6.02870\)
Root analytic conductor: \(2.45534\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 755,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.009102876\)
\(L(\frac12)\) \(\approx\) \(2.009102876\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 - T \)
151 \( 1 + T \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
3 \( 1 + p T + p T^{2} \) 1.3.d
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 13 T + p T^{2} \) 1.73.an
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.89769315994247068795702748681, −9.821599681595636350143055491402, −8.714570290388150728735372265800, −7.05582089620535366417885455704, −6.37645990073359166886674809389, −5.76023063565317861683426689927, −5.15005654462266149294399477060, −4.18842039426849904071575242795, −3.11257095712003080603672911220, −1.12908986678937476948930399684, 1.12908986678937476948930399684, 3.11257095712003080603672911220, 4.18842039426849904071575242795, 5.15005654462266149294399477060, 5.76023063565317861683426689927, 6.37645990073359166886674809389, 7.05582089620535366417885455704, 8.714570290388150728735372265800, 9.821599681595636350143055491402, 10.89769315994247068795702748681

Graph of the $Z$-function along the critical line