Properties

Label 2-714-1.1-c1-0-11
Degree $2$
Conductor $714$
Sign $-1$
Analytic cond. $5.70131$
Root an. cond. $2.38774$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 2·5-s + 6-s + 7-s − 8-s + 9-s + 2·10-s − 2·11-s − 12-s + 4·13-s − 14-s + 2·15-s + 16-s + 17-s − 18-s − 2·19-s − 2·20-s − 21-s + 2·22-s − 4·23-s + 24-s − 25-s − 4·26-s − 27-s + 28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.894·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.632·10-s − 0.603·11-s − 0.288·12-s + 1.10·13-s − 0.267·14-s + 0.516·15-s + 1/4·16-s + 0.242·17-s − 0.235·18-s − 0.458·19-s − 0.447·20-s − 0.218·21-s + 0.426·22-s − 0.834·23-s + 0.204·24-s − 1/5·25-s − 0.784·26-s − 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 714 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 714 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(714\)    =    \(2 \cdot 3 \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(5.70131\)
Root analytic conductor: \(2.38774\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 714,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.24806755681582212164444761454, −9.011731510253748412404240731210, −8.168533204068992686254287894534, −7.61191197369836842681142112998, −6.53839129510517023307217018082, −5.63367551876896838319289589237, −4.43544805921715351911578987483, −3.35161964452269235625257955776, −1.65281106742929297340572396932, 0, 1.65281106742929297340572396932, 3.35161964452269235625257955776, 4.43544805921715351911578987483, 5.63367551876896838319289589237, 6.53839129510517023307217018082, 7.61191197369836842681142112998, 8.168533204068992686254287894534, 9.011731510253748412404240731210, 10.24806755681582212164444761454

Graph of the $Z$-function along the critical line