Properties

Label 2-6840-1.1-c1-0-7
Degree $2$
Conductor $6840$
Sign $1$
Analytic cond. $54.6176$
Root an. cond. $7.39037$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 4·11-s − 2·13-s − 2·17-s − 19-s + 25-s − 6·29-s + 6·37-s + 6·41-s + 4·43-s − 8·47-s − 7·49-s − 6·53-s + 4·55-s + 12·59-s − 2·61-s + 2·65-s + 4·67-s − 8·71-s − 6·73-s + 16·79-s + 4·83-s + 2·85-s + 6·89-s + 95-s + 10·97-s + 10·101-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.20·11-s − 0.554·13-s − 0.485·17-s − 0.229·19-s + 1/5·25-s − 1.11·29-s + 0.986·37-s + 0.937·41-s + 0.609·43-s − 1.16·47-s − 49-s − 0.824·53-s + 0.539·55-s + 1.56·59-s − 0.256·61-s + 0.248·65-s + 0.488·67-s − 0.949·71-s − 0.702·73-s + 1.80·79-s + 0.439·83-s + 0.216·85-s + 0.635·89-s + 0.102·95-s + 1.01·97-s + 0.995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6840\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(54.6176\)
Root analytic conductor: \(7.39037\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.053340527\)
\(L(\frac12)\) \(\approx\) \(1.053340527\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
19 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80677633361074454034617187587, −7.49680457954522492076762538065, −6.59259259597042389447574016415, −5.84289709807230750803159708395, −5.03390034296621196331900440623, −4.47575681554886547584825793205, −3.55933901609947550174739346667, −2.70610336724282529715906832711, −1.95854307692920622402439334992, −0.50015434389376471625756468565, 0.50015434389376471625756468565, 1.95854307692920622402439334992, 2.70610336724282529715906832711, 3.55933901609947550174739346667, 4.47575681554886547584825793205, 5.03390034296621196331900440623, 5.84289709807230750803159708395, 6.59259259597042389447574016415, 7.49680457954522492076762538065, 7.80677633361074454034617187587

Graph of the $Z$-function along the critical line