Show commands: SageMath
Rank
The elliptic curves in class 6840.d have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 6840.d do not have complex multiplication.Modular form 6840.2.a.d
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 8 & 4 & 8 \\ 2 & 1 & 2 & 4 & 2 & 4 \\ 4 & 2 & 1 & 8 & 4 & 8 \\ 8 & 4 & 8 & 1 & 2 & 4 \\ 4 & 2 & 4 & 2 & 1 & 2 \\ 8 & 4 & 8 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 6840.d
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
6840.d1 | 6840e5 | \([0, 0, 0, -6238083, 5996872798]\) | \(17981241677724245762/16245\) | \(24253655040\) | \([2]\) | \(65536\) | \(2.1879\) | |
6840.d2 | 6840e4 | \([0, 0, 0, -389883, 93699718]\) | \(8780093172522724/263900025\) | \(197000313062400\) | \([2, 2]\) | \(32768\) | \(1.8413\) | |
6840.d3 | 6840e6 | \([0, 0, 0, -373683, 101841838]\) | \(-3865238121540962/764260336845\) | \(-1141034568826890240\) | \([2]\) | \(65536\) | \(2.1879\) | |
6840.d4 | 6840e3 | \([0, 0, 0, -110883, -12908882]\) | \(201971983086724/20447192475\) | \(15263747393817600\) | \([2]\) | \(32768\) | \(1.8413\) | |
6840.d5 | 6840e2 | \([0, 0, 0, -25383, 1335418]\) | \(9691367618896/1480325625\) | \(276264289440000\) | \([2, 2]\) | \(16384\) | \(1.4948\) | |
6840.d6 | 6840e1 | \([0, 0, 0, 2742, 114793]\) | \(195469297664/601171875\) | \(-7012068750000\) | \([2]\) | \(8192\) | \(1.1482\) | \(\Gamma_0(N)\)-optimal |