Properties

Label 2-6840-1.1-c1-0-18
Degree $2$
Conductor $6840$
Sign $1$
Analytic cond. $54.6176$
Root an. cond. $7.39037$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·7-s + 4·11-s − 2·13-s + 19-s − 8·23-s + 25-s + 2·29-s + 10·31-s − 2·35-s + 6·37-s − 12·41-s + 8·43-s − 8·47-s − 3·49-s + 6·53-s + 4·55-s + 6·59-s + 10·61-s − 2·65-s − 4·67-s − 2·73-s − 8·77-s + 10·79-s + 6·83-s + 4·91-s + 95-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.755·7-s + 1.20·11-s − 0.554·13-s + 0.229·19-s − 1.66·23-s + 1/5·25-s + 0.371·29-s + 1.79·31-s − 0.338·35-s + 0.986·37-s − 1.87·41-s + 1.21·43-s − 1.16·47-s − 3/7·49-s + 0.824·53-s + 0.539·55-s + 0.781·59-s + 1.28·61-s − 0.248·65-s − 0.488·67-s − 0.234·73-s − 0.911·77-s + 1.12·79-s + 0.658·83-s + 0.419·91-s + 0.102·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6840\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(54.6176\)
Root analytic conductor: \(7.39037\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.982342554\)
\(L(\frac12)\) \(\approx\) \(1.982342554\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
19 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + p T^{2} \) 1.17.a
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.053984250624830108949386248547, −7.11860656391730210479111292980, −6.40915918060034412867450797096, −6.13959055082787592841858036672, −5.13228821731546196103126441907, −4.31650556846324797817852036847, −3.60249543103238411798979282877, −2.71741286669436281375339226070, −1.85107869847392145428320374516, −0.72140743868074912833281881137, 0.72140743868074912833281881137, 1.85107869847392145428320374516, 2.71741286669436281375339226070, 3.60249543103238411798979282877, 4.31650556846324797817852036847, 5.13228821731546196103126441907, 6.13959055082787592841858036672, 6.40915918060034412867450797096, 7.11860656391730210479111292980, 8.053984250624830108949386248547

Graph of the $Z$-function along the critical line