Properties

Label 2-680-1.1-c1-0-13
Degree $2$
Conductor $680$
Sign $-1$
Analytic cond. $5.42982$
Root an. cond. $2.33019$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3·9-s − 2·13-s + 17-s − 4·19-s − 8·23-s + 25-s + 2·29-s − 8·31-s + 2·37-s + 2·41-s − 4·43-s + 3·45-s − 7·49-s + 6·53-s − 4·59-s − 6·61-s + 2·65-s + 4·67-s − 8·71-s + 2·73-s + 9·81-s + 4·83-s − 85-s − 6·89-s + 4·95-s + 18·97-s + ⋯
L(s)  = 1  − 0.447·5-s − 9-s − 0.554·13-s + 0.242·17-s − 0.917·19-s − 1.66·23-s + 1/5·25-s + 0.371·29-s − 1.43·31-s + 0.328·37-s + 0.312·41-s − 0.609·43-s + 0.447·45-s − 49-s + 0.824·53-s − 0.520·59-s − 0.768·61-s + 0.248·65-s + 0.488·67-s − 0.949·71-s + 0.234·73-s + 81-s + 0.439·83-s − 0.108·85-s − 0.635·89-s + 0.410·95-s + 1.82·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(680\)    =    \(2^{3} \cdot 5 \cdot 17\)
Sign: $-1$
Analytic conductor: \(5.42982\)
Root analytic conductor: \(2.33019\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 680,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
17 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.11412498419995635064768169571, −9.120593456645095048374168582985, −8.277492610756201606277035581204, −7.58297430387033033142097041666, −6.42605354962456456940109508006, −5.57397530040962827098114178875, −4.44860264411923876548469666329, −3.37622543093299548354865598128, −2.13823702677682119982697431133, 0, 2.13823702677682119982697431133, 3.37622543093299548354865598128, 4.44860264411923876548469666329, 5.57397530040962827098114178875, 6.42605354962456456940109508006, 7.58297430387033033142097041666, 8.277492610756201606277035581204, 9.120593456645095048374168582985, 10.11412498419995635064768169571

Graph of the $Z$-function along the critical line