Properties

Label 2-66066-1.1-c1-0-23
Degree $2$
Conductor $66066$
Sign $1$
Analytic cond. $527.539$
Root an. cond. $22.9682$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 2·5-s − 6-s + 7-s − 8-s + 9-s + 2·10-s + 12-s − 13-s − 14-s − 2·15-s + 16-s + 6·17-s − 18-s + 4·19-s − 2·20-s + 21-s + 8·23-s − 24-s − 25-s + 26-s + 27-s + 28-s + 2·29-s + 2·30-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.894·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.632·10-s + 0.288·12-s − 0.277·13-s − 0.267·14-s − 0.516·15-s + 1/4·16-s + 1.45·17-s − 0.235·18-s + 0.917·19-s − 0.447·20-s + 0.218·21-s + 1.66·23-s − 0.204·24-s − 1/5·25-s + 0.196·26-s + 0.192·27-s + 0.188·28-s + 0.371·29-s + 0.365·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 66066 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 66066 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(66066\)    =    \(2 \cdot 3 \cdot 7 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(527.539\)
Root analytic conductor: \(22.9682\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 66066,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.088072763\)
\(L(\frac12)\) \(\approx\) \(2.088072763\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.35333426053740, −13.86589494330645, −13.08694197792099, −12.59246857382238, −12.20397610512677, −11.50189338663260, −11.23013823734398, −10.70875490678257, −9.983110277329365, −9.500335124121889, −9.205738303596371, −8.408840724914499, −8.040099870845386, −7.527718064286048, −7.295741987480355, −6.614185711416555, −5.780253881628626, −5.179220048575989, −4.650130215188058, −3.804310914018118, −3.250572681655687, −2.899835581596258, −1.920013291549964, −1.235915886837018, −0.5785458328995170, 0.5785458328995170, 1.235915886837018, 1.920013291549964, 2.899835581596258, 3.250572681655687, 3.804310914018118, 4.650130215188058, 5.179220048575989, 5.780253881628626, 6.614185711416555, 7.295741987480355, 7.527718064286048, 8.040099870845386, 8.408840724914499, 9.205738303596371, 9.500335124121889, 9.983110277329365, 10.70875490678257, 11.23013823734398, 11.50189338663260, 12.20397610512677, 12.59246857382238, 13.08694197792099, 13.86589494330645, 14.35333426053740

Graph of the $Z$-function along the critical line