Properties

Label 2-66066-1.1-c1-0-12
Degree $2$
Conductor $66066$
Sign $1$
Analytic cond. $527.539$
Root an. cond. $22.9682$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 2·5-s − 6-s − 7-s − 8-s + 9-s + 2·10-s + 12-s + 13-s + 14-s − 2·15-s + 16-s + 2·17-s − 18-s + 4·19-s − 2·20-s − 21-s − 4·23-s − 24-s − 25-s − 26-s + 27-s − 28-s + 6·29-s + 2·30-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.894·5-s − 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.632·10-s + 0.288·12-s + 0.277·13-s + 0.267·14-s − 0.516·15-s + 1/4·16-s + 0.485·17-s − 0.235·18-s + 0.917·19-s − 0.447·20-s − 0.218·21-s − 0.834·23-s − 0.204·24-s − 1/5·25-s − 0.196·26-s + 0.192·27-s − 0.188·28-s + 1.11·29-s + 0.365·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 66066 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 66066 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(66066\)    =    \(2 \cdot 3 \cdot 7 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(527.539\)
Root analytic conductor: \(22.9682\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 66066,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.387261422\)
\(L(\frac12)\) \(\approx\) \(1.387261422\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.14839826406090, −13.84200711874280, −13.28465830319953, −12.36907309728343, −12.22400694124620, −11.80238566355526, −11.02981440003133, −10.66480936626103, −9.978935418474567, −9.641047037530799, −9.074096038497997, −8.460716816942459, −8.072289501515319, −7.626916437629066, −7.116594248517508, −6.559786786051399, −5.914037269466991, −5.251069017363247, −4.496952474125015, −3.770006197156461, −3.402905934144917, −2.784566055475967, −2.011945988104188, −1.227741510808887, −0.4602156792126370, 0.4602156792126370, 1.227741510808887, 2.011945988104188, 2.784566055475967, 3.402905934144917, 3.770006197156461, 4.496952474125015, 5.251069017363247, 5.914037269466991, 6.559786786051399, 7.116594248517508, 7.626916437629066, 8.072289501515319, 8.460716816942459, 9.074096038497997, 9.641047037530799, 9.978935418474567, 10.66480936626103, 11.02981440003133, 11.80238566355526, 12.22400694124620, 12.36907309728343, 13.28465830319953, 13.84200711874280, 14.14839826406090

Graph of the $Z$-function along the critical line