Properties

Label 66066.y
Number of curves $4$
Conductor $66066$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 66066.y have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(7\)\(1 + T\)
\(11\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 66066.y do not have complex multiplication.

Modular form 66066.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - 2 q^{5} - q^{6} - q^{7} - q^{8} + q^{9} + 2 q^{10} + q^{12} + q^{13} + q^{14} - 2 q^{15} + q^{16} + 2 q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 66066.y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
66066.y1 66066x4 \([1, 0, 1, -359091582, -2619147230240]\) \(2890568544635035786835377/7695534223160784\) \(13633108303916941663824\) \([2]\) \(14745600\) \(3.4822\)  
66066.y2 66066x2 \([1, 0, 1, -22721262, -39859616480]\) \(732259344458458209457/36367448083110144\) \(64427152693562689814784\) \([2, 2]\) \(7372800\) \(3.1356\)  
66066.y3 66066x1 \([1, 0, 1, -3980782, 2253990176]\) \(3937972047511014577/1039667378061312\) \(1841834179945675948032\) \([2]\) \(3686400\) \(2.7891\) \(\Gamma_0(N)\)-optimal
66066.y4 66066x3 \([1, 0, 1, 13801378, -155767866784]\) \(164109982300653435983/6011810622751581648\) \(-10650289238652414735912528\) \([4]\) \(14745600\) \(3.4822\)