Properties

Label 2-650-1.1-c1-0-14
Degree $2$
Conductor $650$
Sign $1$
Analytic cond. $5.19027$
Root an. cond. $2.27821$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2·3-s + 4-s + 2·6-s + 4·7-s + 8-s + 9-s − 6·11-s + 2·12-s − 13-s + 4·14-s + 16-s + 6·17-s + 18-s + 2·19-s + 8·21-s − 6·22-s − 6·23-s + 2·24-s − 26-s − 4·27-s + 4·28-s − 6·29-s + 2·31-s + 32-s − 12·33-s + 6·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.15·3-s + 1/2·4-s + 0.816·6-s + 1.51·7-s + 0.353·8-s + 1/3·9-s − 1.80·11-s + 0.577·12-s − 0.277·13-s + 1.06·14-s + 1/4·16-s + 1.45·17-s + 0.235·18-s + 0.458·19-s + 1.74·21-s − 1.27·22-s − 1.25·23-s + 0.408·24-s − 0.196·26-s − 0.769·27-s + 0.755·28-s − 1.11·29-s + 0.359·31-s + 0.176·32-s − 2.08·33-s + 1.02·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(650\)    =    \(2 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(5.19027\)
Root analytic conductor: \(2.27821\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.384717314\)
\(L(\frac12)\) \(\approx\) \(3.384717314\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
13 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.54706085367247596930787344294, −9.795340002438148581315476347893, −8.459740217786738812033872338622, −7.84813165184443739324894783244, −7.48067692981350872082789436709, −5.60849552610161287200501685502, −5.12551463257983439866136237124, −3.86701613615803161105270189660, −2.78612768174608789776745831075, −1.87624790774678570500324840839, 1.87624790774678570500324840839, 2.78612768174608789776745831075, 3.86701613615803161105270189660, 5.12551463257983439866136237124, 5.60849552610161287200501685502, 7.48067692981350872082789436709, 7.84813165184443739324894783244, 8.459740217786738812033872338622, 9.795340002438148581315476347893, 10.54706085367247596930787344294

Graph of the $Z$-function along the critical line