Properties

Label 2-62400-1.1-c1-0-141
Degree $2$
Conductor $62400$
Sign $-1$
Analytic cond. $498.266$
Root an. cond. $22.3218$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·7-s + 9-s + 13-s + 4·17-s + 6·19-s + 2·21-s + 6·23-s − 27-s − 4·29-s − 8·31-s − 6·37-s − 39-s + 6·41-s − 4·43-s + 8·47-s − 3·49-s − 4·51-s + 2·53-s − 6·57-s + 2·61-s − 2·63-s + 4·67-s − 6·69-s + 8·71-s − 16·79-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.755·7-s + 1/3·9-s + 0.277·13-s + 0.970·17-s + 1.37·19-s + 0.436·21-s + 1.25·23-s − 0.192·27-s − 0.742·29-s − 1.43·31-s − 0.986·37-s − 0.160·39-s + 0.937·41-s − 0.609·43-s + 1.16·47-s − 3/7·49-s − 0.560·51-s + 0.274·53-s − 0.794·57-s + 0.256·61-s − 0.251·63-s + 0.488·67-s − 0.722·69-s + 0.949·71-s − 1.80·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 62400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(62400\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(498.266\)
Root analytic conductor: \(22.3218\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 62400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.58220157929277, −13.92393749231530, −13.49883473411296, −12.87367559604585, −12.53237391442216, −12.09324708091896, −11.34435909079757, −11.11142861160238, −10.48660354137172, −9.858564313792030, −9.508681006667130, −9.012853540210837, −8.368468715597079, −7.545300937878581, −7.223253143603943, −6.772133394112136, −5.992284876401992, −5.417757242189822, −5.289631435222758, −4.342421401968482, −3.540181580241126, −3.321974350199094, −2.484010667647517, −1.495988719860811, −0.9265120034138520, 0, 0.9265120034138520, 1.495988719860811, 2.484010667647517, 3.321974350199094, 3.540181580241126, 4.342421401968482, 5.289631435222758, 5.417757242189822, 5.992284876401992, 6.772133394112136, 7.223253143603943, 7.545300937878581, 8.368468715597079, 9.012853540210837, 9.508681006667130, 9.858564313792030, 10.48660354137172, 11.11142861160238, 11.34435909079757, 12.09324708091896, 12.53237391442216, 12.87367559604585, 13.49883473411296, 13.92393749231530, 14.58220157929277

Graph of the $Z$-function along the critical line