Properties

Label 2-5586-1.1-c1-0-38
Degree $2$
Conductor $5586$
Sign $1$
Analytic cond. $44.6044$
Root an. cond. $6.67865$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 8-s + 9-s + 6·11-s − 12-s + 4·13-s + 16-s − 18-s − 19-s − 6·22-s + 6·23-s + 24-s − 5·25-s − 4·26-s − 27-s + 6·29-s + 4·31-s − 32-s − 6·33-s + 36-s + 2·37-s + 38-s − 4·39-s + 6·41-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.353·8-s + 1/3·9-s + 1.80·11-s − 0.288·12-s + 1.10·13-s + 1/4·16-s − 0.235·18-s − 0.229·19-s − 1.27·22-s + 1.25·23-s + 0.204·24-s − 25-s − 0.784·26-s − 0.192·27-s + 1.11·29-s + 0.718·31-s − 0.176·32-s − 1.04·33-s + 1/6·36-s + 0.328·37-s + 0.162·38-s − 0.640·39-s + 0.937·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5586 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5586 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5586\)    =    \(2 \cdot 3 \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(44.6044\)
Root analytic conductor: \(6.67865\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5586,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.536065612\)
\(L(\frac12)\) \(\approx\) \(1.536065612\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
7 \( 1 \)
19 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + p T^{2} \) 1.17.a
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.448413415952757823859276826032, −7.30170772144122876227302062553, −6.68774061006756086268358265358, −6.21971937300053445652525318521, −5.49217727786485288614307314105, −4.32566530925924446527156549366, −3.80590551286803466423516961593, −2.68981811488085604602993737662, −1.43164106767407604874442455433, −0.871617597486924605171670414684, 0.871617597486924605171670414684, 1.43164106767407604874442455433, 2.68981811488085604602993737662, 3.80590551286803466423516961593, 4.32566530925924446527156549366, 5.49217727786485288614307314105, 6.21971937300053445652525318521, 6.68774061006756086268358265358, 7.30170772144122876227302062553, 8.448413415952757823859276826032

Graph of the $Z$-function along the critical line