Properties

Label 2-552e2-1.1-c1-0-142
Degree $2$
Conductor $304704$
Sign $1$
Analytic cond. $2433.07$
Root an. cond. $49.3261$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 4·7-s + 2·11-s + 2·13-s − 2·17-s + 2·19-s + 11·25-s + 2·29-s + 16·35-s − 4·37-s − 6·41-s − 10·43-s + 9·49-s + 4·53-s − 8·55-s − 12·59-s − 8·61-s − 8·65-s + 10·67-s + 6·73-s − 8·77-s − 12·79-s + 14·83-s + 8·85-s − 6·89-s − 8·91-s − 8·95-s + ⋯
L(s)  = 1  − 1.78·5-s − 1.51·7-s + 0.603·11-s + 0.554·13-s − 0.485·17-s + 0.458·19-s + 11/5·25-s + 0.371·29-s + 2.70·35-s − 0.657·37-s − 0.937·41-s − 1.52·43-s + 9/7·49-s + 0.549·53-s − 1.07·55-s − 1.56·59-s − 1.02·61-s − 0.992·65-s + 1.22·67-s + 0.702·73-s − 0.911·77-s − 1.35·79-s + 1.53·83-s + 0.867·85-s − 0.635·89-s − 0.838·91-s − 0.820·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(304704\)    =    \(2^{6} \cdot 3^{2} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(2433.07\)
Root analytic conductor: \(49.3261\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 304704,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.06040545348051, −12.56006423489695, −12.11658516117853, −11.86847637466204, −11.43540231675856, −10.81221202462382, −10.53988082276707, −9.904167192842598, −9.366357253335238, −9.009166544321019, −8.469371994106643, −8.074070274136916, −7.596617135401983, −6.852209869367162, −6.744498347692074, −6.375792742823434, −5.555899834095623, −5.016589544920038, −4.380926554117838, −3.891522016841451, −3.534255739924854, −3.131271280712434, −2.639881412127935, −1.590603678297354, −0.9790862148873024, 0, 0, 0.9790862148873024, 1.590603678297354, 2.639881412127935, 3.131271280712434, 3.534255739924854, 3.891522016841451, 4.380926554117838, 5.016589544920038, 5.555899834095623, 6.375792742823434, 6.744498347692074, 6.852209869367162, 7.596617135401983, 8.074070274136916, 8.469371994106643, 9.009166544321019, 9.366357253335238, 9.904167192842598, 10.53988082276707, 10.81221202462382, 11.43540231675856, 11.86847637466204, 12.11658516117853, 12.56006423489695, 13.06040545348051

Graph of the $Z$-function along the critical line