Properties

Label 2-5202-1.1-c1-0-41
Degree $2$
Conductor $5202$
Sign $1$
Analytic cond. $41.5381$
Root an. cond. $6.44501$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 4·7-s − 8-s + 6·11-s + 2·13-s − 4·14-s + 16-s − 4·19-s − 6·22-s − 5·25-s − 2·26-s + 4·28-s + 4·31-s − 32-s + 4·37-s + 4·38-s + 6·41-s + 8·43-s + 6·44-s + 9·49-s + 5·50-s + 2·52-s + 6·53-s − 4·56-s + 4·61-s − 4·62-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.51·7-s − 0.353·8-s + 1.80·11-s + 0.554·13-s − 1.06·14-s + 1/4·16-s − 0.917·19-s − 1.27·22-s − 25-s − 0.392·26-s + 0.755·28-s + 0.718·31-s − 0.176·32-s + 0.657·37-s + 0.648·38-s + 0.937·41-s + 1.21·43-s + 0.904·44-s + 9/7·49-s + 0.707·50-s + 0.277·52-s + 0.824·53-s − 0.534·56-s + 0.512·61-s − 0.508·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5202 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5202 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5202\)    =    \(2 \cdot 3^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(41.5381\)
Root analytic conductor: \(6.44501\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5202,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.088293764\)
\(L(\frac12)\) \(\approx\) \(2.088293764\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
17 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.243514991730539144217181571602, −7.70798233132200076449980309283, −6.82004608046967562037073412090, −6.19743537938870376645485282745, −5.44433194423880119523961633110, −4.21154689020545323480297501674, −4.02792188414833404462281994143, −2.52693971063750362367950493388, −1.64644018076655648104085466620, −0.968095230515067382105649946659, 0.968095230515067382105649946659, 1.64644018076655648104085466620, 2.52693971063750362367950493388, 4.02792188414833404462281994143, 4.21154689020545323480297501674, 5.44433194423880119523961633110, 6.19743537938870376645485282745, 6.82004608046967562037073412090, 7.70798233132200076449980309283, 8.243514991730539144217181571602

Graph of the $Z$-function along the critical line