Properties

Label 2-4284-1.1-c1-0-25
Degree $2$
Conductor $4284$
Sign $-1$
Analytic cond. $34.2079$
Root an. cond. $5.84875$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 7-s − 2·13-s + 17-s + 6·19-s − 8·23-s − 25-s + 4·29-s − 2·35-s + 10·37-s − 10·41-s − 8·43-s + 8·47-s + 49-s − 6·53-s + 4·59-s − 8·61-s + 4·65-s − 4·67-s + 8·71-s + 4·73-s − 2·85-s − 10·89-s − 2·91-s − 12·95-s − 18·101-s − 14·103-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.377·7-s − 0.554·13-s + 0.242·17-s + 1.37·19-s − 1.66·23-s − 1/5·25-s + 0.742·29-s − 0.338·35-s + 1.64·37-s − 1.56·41-s − 1.21·43-s + 1.16·47-s + 1/7·49-s − 0.824·53-s + 0.520·59-s − 1.02·61-s + 0.496·65-s − 0.488·67-s + 0.949·71-s + 0.468·73-s − 0.216·85-s − 1.05·89-s − 0.209·91-s − 1.23·95-s − 1.79·101-s − 1.37·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4284 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4284 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4284\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(34.2079\)
Root analytic conductor: \(5.84875\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4284,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.953214926954187995816044225871, −7.50771857506331378376495110708, −6.65298695003059198257226642180, −5.74848146635077068277698991513, −4.97278307510275160646233582453, −4.20602118699970139626930363628, −3.46704732461879922705217223274, −2.51906405567727999633690617948, −1.33244702604165751838533247806, 0, 1.33244702604165751838533247806, 2.51906405567727999633690617948, 3.46704732461879922705217223274, 4.20602118699970139626930363628, 4.97278307510275160646233582453, 5.74848146635077068277698991513, 6.65298695003059198257226642180, 7.50771857506331378376495110708, 7.953214926954187995816044225871

Graph of the $Z$-function along the critical line