Properties

Label 2-41280-1.1-c1-0-27
Degree $2$
Conductor $41280$
Sign $1$
Analytic cond. $329.622$
Root an. cond. $18.1555$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 9-s + 4·11-s + 6·13-s − 15-s + 2·17-s + 25-s + 27-s + 2·29-s − 4·31-s + 4·33-s + 10·37-s + 6·39-s − 6·41-s − 43-s − 45-s − 7·49-s + 2·51-s + 6·53-s − 4·55-s + 4·59-s + 2·61-s − 6·65-s − 12·67-s + 16·71-s + 14·73-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1/3·9-s + 1.20·11-s + 1.66·13-s − 0.258·15-s + 0.485·17-s + 1/5·25-s + 0.192·27-s + 0.371·29-s − 0.718·31-s + 0.696·33-s + 1.64·37-s + 0.960·39-s − 0.937·41-s − 0.152·43-s − 0.149·45-s − 49-s + 0.280·51-s + 0.824·53-s − 0.539·55-s + 0.520·59-s + 0.256·61-s − 0.744·65-s − 1.46·67-s + 1.89·71-s + 1.63·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 41280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 41280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(41280\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 43\)
Sign: $1$
Analytic conductor: \(329.622\)
Root analytic conductor: \(18.1555\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 41280,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.890313895\)
\(L(\frac12)\) \(\approx\) \(3.890313895\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
43 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 6 T + p T^{2} \) 1.41.g
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.69684486793198, −14.27692089200213, −13.78559313903565, −13.16433564081912, −12.84331065954755, −12.06441553970147, −11.59843529188309, −11.20056571862358, −10.57413893242340, −9.972945810622699, −9.275475493548638, −8.974566668012512, −8.303971493260803, −7.973917318806164, −7.275920640942862, −6.516985972367761, −6.300394582488312, −5.471847275510535, −4.711420421376437, −3.935684943005344, −3.673895617720552, −3.086136587861677, −2.120487480599975, −1.347745840065911, −0.7707208789212679, 0.7707208789212679, 1.347745840065911, 2.120487480599975, 3.086136587861677, 3.673895617720552, 3.935684943005344, 4.711420421376437, 5.471847275510535, 6.300394582488312, 6.516985972367761, 7.275920640942862, 7.973917318806164, 8.303971493260803, 8.974566668012512, 9.275475493548638, 9.972945810622699, 10.57413893242340, 11.20056571862358, 11.59843529188309, 12.06441553970147, 12.84331065954755, 13.16433564081912, 13.78559313903565, 14.27692089200213, 14.69684486793198

Graph of the $Z$-function along the critical line