Properties

Label 2-4032-1.1-c1-0-50
Degree $2$
Conductor $4032$
Sign $-1$
Analytic cond. $32.1956$
Root an. cond. $5.67412$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s + 2·11-s + 2·13-s − 4·17-s − 4·19-s − 6·23-s − 5·25-s − 2·29-s + 6·37-s − 8·41-s − 8·43-s − 4·47-s + 49-s − 6·53-s + 14·61-s + 4·67-s − 2·71-s − 2·73-s + 2·77-s − 4·79-s − 12·83-s + 2·91-s + 6·97-s + 12·101-s + 8·103-s − 6·107-s + 18·109-s + ⋯
L(s)  = 1  + 0.377·7-s + 0.603·11-s + 0.554·13-s − 0.970·17-s − 0.917·19-s − 1.25·23-s − 25-s − 0.371·29-s + 0.986·37-s − 1.24·41-s − 1.21·43-s − 0.583·47-s + 1/7·49-s − 0.824·53-s + 1.79·61-s + 0.488·67-s − 0.237·71-s − 0.234·73-s + 0.227·77-s − 0.450·79-s − 1.31·83-s + 0.209·91-s + 0.609·97-s + 1.19·101-s + 0.788·103-s − 0.580·107-s + 1.72·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4032\)    =    \(2^{6} \cdot 3^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(32.1956\)
Root analytic conductor: \(5.67412\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4032,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.321087869606634401891245997354, −7.34793644413038459956712918109, −6.46623138891639762114972008358, −6.05094504092373992982078642379, −5.00596561703897150201379031400, −4.18067107542353056162359629825, −3.60845197465265311641819294253, −2.28613511580267472263897051908, −1.56841995500689962506292115998, 0, 1.56841995500689962506292115998, 2.28613511580267472263897051908, 3.60845197465265311641819294253, 4.18067107542353056162359629825, 5.00596561703897150201379031400, 6.05094504092373992982078642379, 6.46623138891639762114972008358, 7.34793644413038459956712918109, 8.321087869606634401891245997354

Graph of the $Z$-function along the critical line