Properties

Label 2-381480-1.1-c1-0-22
Degree $2$
Conductor $381480$
Sign $1$
Analytic cond. $3046.13$
Root an. cond. $55.1917$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 2·7-s + 9-s − 11-s + 4·13-s + 15-s − 4·19-s + 2·21-s − 4·23-s + 25-s + 27-s + 2·29-s + 8·31-s − 33-s + 2·35-s + 2·37-s + 4·39-s + 6·41-s − 6·43-s + 45-s − 4·47-s − 3·49-s + 6·53-s − 55-s − 4·57-s − 4·59-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s − 0.301·11-s + 1.10·13-s + 0.258·15-s − 0.917·19-s + 0.436·21-s − 0.834·23-s + 1/5·25-s + 0.192·27-s + 0.371·29-s + 1.43·31-s − 0.174·33-s + 0.338·35-s + 0.328·37-s + 0.640·39-s + 0.937·41-s − 0.914·43-s + 0.149·45-s − 0.583·47-s − 3/7·49-s + 0.824·53-s − 0.134·55-s − 0.529·57-s − 0.520·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 381480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 381480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(381480\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(3046.13\)
Root analytic conductor: \(55.1917\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 381480,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.212225044\)
\(L(\frac12)\) \(\approx\) \(5.212225044\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
11 \( 1 + T \)
17 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.45447565786807, −12.09391055306701, −11.53328147007749, −10.97931320665268, −10.77469587467845, −10.14126961978609, −9.817173583118609, −9.295466095715192, −8.689254445950071, −8.392326159027455, −7.934184958566274, −7.758713451987143, −6.783303074410239, −6.470901794056194, −6.141633977232043, −5.396819790721056, −5.003267023820949, −4.395962162871653, −3.991101364202546, −3.442631503684940, −2.782466580433182, −2.240780488176367, −1.836524973554575, −1.170156565346212, −0.5831138022415855, 0.5831138022415855, 1.170156565346212, 1.836524973554575, 2.240780488176367, 2.782466580433182, 3.442631503684940, 3.991101364202546, 4.395962162871653, 5.003267023820949, 5.396819790721056, 6.141633977232043, 6.470901794056194, 6.783303074410239, 7.758713451987143, 7.934184958566274, 8.392326159027455, 8.689254445950071, 9.295466095715192, 9.817173583118609, 10.14126961978609, 10.77469587467845, 10.97931320665268, 11.53328147007749, 12.09391055306701, 12.45447565786807

Graph of the $Z$-function along the critical line