Properties

Label 2-361998-1.1-c1-0-34
Degree $2$
Conductor $361998$
Sign $1$
Analytic cond. $2890.56$
Root an. cond. $53.7640$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 3·5-s + 7-s + 8-s − 3·10-s − 3·11-s + 14-s + 16-s − 17-s + 8·19-s − 3·20-s − 3·22-s + 3·23-s + 4·25-s + 28-s + 9·29-s − 4·31-s + 32-s − 34-s − 3·35-s + 2·37-s + 8·38-s − 3·40-s − 6·41-s + 5·43-s − 3·44-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.34·5-s + 0.377·7-s + 0.353·8-s − 0.948·10-s − 0.904·11-s + 0.267·14-s + 1/4·16-s − 0.242·17-s + 1.83·19-s − 0.670·20-s − 0.639·22-s + 0.625·23-s + 4/5·25-s + 0.188·28-s + 1.67·29-s − 0.718·31-s + 0.176·32-s − 0.171·34-s − 0.507·35-s + 0.328·37-s + 1.29·38-s − 0.474·40-s − 0.937·41-s + 0.762·43-s − 0.452·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 361998 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 361998 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(361998\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 13^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(2890.56\)
Root analytic conductor: \(53.7640\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 361998,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.503779824\)
\(L(\frac12)\) \(\approx\) \(3.503779824\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 - T \)
13 \( 1 \)
17 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 + 3 T + p T^{2} \) 1.11.d
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.40035716279358, −12.04655307038836, −11.71068095761863, −11.23265382674556, −10.96914851553707, −10.30621149979847, −10.02987326290166, −9.244307343117516, −8.840309173284464, −8.113104914794551, −7.942359109256884, −7.461019964985191, −7.057213157734263, −6.583191648160984, −5.885441762568334, −5.318690383010742, −4.939451973191510, −4.586220438009238, −3.992465035407060, −3.371171782627621, −3.095198890322810, −2.549560036787147, −1.788216791916376, −1.007654523908982, −0.4917864216136490, 0.4917864216136490, 1.007654523908982, 1.788216791916376, 2.549560036787147, 3.095198890322810, 3.371171782627621, 3.992465035407060, 4.586220438009238, 4.939451973191510, 5.318690383010742, 5.885441762568334, 6.583191648160984, 7.057213157734263, 7.461019964985191, 7.942359109256884, 8.113104914794551, 8.840309173284464, 9.244307343117516, 10.02987326290166, 10.30621149979847, 10.96914851553707, 11.23265382674556, 11.71068095761863, 12.04655307038836, 12.40035716279358

Graph of the $Z$-function along the critical line