Properties

Label 2-35700-1.1-c1-0-31
Degree $2$
Conductor $35700$
Sign $-1$
Analytic cond. $285.065$
Root an. cond. $16.8838$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s + 2·11-s − 6·13-s − 17-s − 21-s − 4·23-s + 27-s + 6·29-s + 6·31-s + 2·33-s − 6·37-s − 6·39-s − 6·41-s + 10·43-s − 6·47-s + 49-s − 51-s − 6·53-s + 8·59-s − 2·61-s − 63-s + 10·67-s − 4·69-s + 6·71-s + 10·73-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 1/3·9-s + 0.603·11-s − 1.66·13-s − 0.242·17-s − 0.218·21-s − 0.834·23-s + 0.192·27-s + 1.11·29-s + 1.07·31-s + 0.348·33-s − 0.986·37-s − 0.960·39-s − 0.937·41-s + 1.52·43-s − 0.875·47-s + 1/7·49-s − 0.140·51-s − 0.824·53-s + 1.04·59-s − 0.256·61-s − 0.125·63-s + 1.22·67-s − 0.481·69-s + 0.712·71-s + 1.17·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(285.065\)
Root analytic conductor: \(16.8838\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 35700,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 6 T + p T^{2} \) 1.13.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.19165595049385, −14.53022415648145, −14.06789893845715, −13.92557826882823, −12.98707644310566, −12.61653184574141, −12.00642097021660, −11.74783081713344, −10.90090925057420, −10.12487916478044, −9.916618777627749, −9.406154653243465, −8.714376345145771, −8.233743032656144, −7.645935410981020, −6.971450005185050, −6.610744246675100, −5.931546785085931, −5.019172484417075, −4.639753915314955, −3.895229552770808, −3.253279257495421, −2.513708604926210, −2.052700355997736, −1.020385482529998, 0, 1.020385482529998, 2.052700355997736, 2.513708604926210, 3.253279257495421, 3.895229552770808, 4.639753915314955, 5.019172484417075, 5.931546785085931, 6.610744246675100, 6.971450005185050, 7.645935410981020, 8.233743032656144, 8.714376345145771, 9.406154653243465, 9.916618777627749, 10.12487916478044, 10.90090925057420, 11.74783081713344, 12.00642097021660, 12.61653184574141, 12.98707644310566, 13.92557826882823, 14.06789893845715, 14.53022415648145, 15.19165595049385

Graph of the $Z$-function along the critical line