Properties

Label 2-3456-1.1-c1-0-42
Degree $2$
Conductor $3456$
Sign $-1$
Analytic cond. $27.5962$
Root an. cond. $5.25321$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s + 11-s − 2·13-s + 2·17-s + 4·19-s − 4·23-s − 4·25-s + 6·29-s − 3·31-s + 35-s − 4·37-s + 6·43-s + 2·47-s − 6·49-s − 3·53-s − 55-s − 4·59-s − 8·61-s + 2·65-s + 2·67-s + 6·71-s − 7·73-s − 77-s − 8·79-s + 9·83-s − 2·85-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s + 0.301·11-s − 0.554·13-s + 0.485·17-s + 0.917·19-s − 0.834·23-s − 4/5·25-s + 1.11·29-s − 0.538·31-s + 0.169·35-s − 0.657·37-s + 0.914·43-s + 0.291·47-s − 6/7·49-s − 0.412·53-s − 0.134·55-s − 0.520·59-s − 1.02·61-s + 0.248·65-s + 0.244·67-s + 0.712·71-s − 0.819·73-s − 0.113·77-s − 0.900·79-s + 0.987·83-s − 0.216·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3456\)    =    \(2^{7} \cdot 3^{3}\)
Sign: $-1$
Analytic conductor: \(27.5962\)
Root analytic conductor: \(5.25321\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3456,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.050100998818257336993219851544, −7.58650361754200810022033992258, −6.77881545003433188894440611768, −5.97629865190862322169908364868, −5.19590723901610650808869978368, −4.26935121830958918846934579750, −3.50701121063537275942899711628, −2.64886062866746601925031687396, −1.40257266022074623092089392269, 0, 1.40257266022074623092089392269, 2.64886062866746601925031687396, 3.50701121063537275942899711628, 4.26935121830958918846934579750, 5.19590723901610650808869978368, 5.97629865190862322169908364868, 6.77881545003433188894440611768, 7.58650361754200810022033992258, 8.050100998818257336993219851544

Graph of the $Z$-function along the critical line