Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 3 x + 53 x^{2}$ |
| Frobenius angles: | $\pm0.566057977562$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-203}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $4$ |
| Isomorphism classes: | 4 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $57$ | $2907$ | $148428$ | $7886691$ | $418230717$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $57$ | $2907$ | $148428$ | $7886691$ | $418230717$ | $22164456384$ | $1174708987257$ | $62259691820643$ | $3299763701661084$ | $174887469961244307$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which 0 are hyperelliptic):
- $y^2=x^3+39 x+25$
- $y^2=x^3+13 x+26$
- $y^2=x^3+17 x+17$
- $y^2=x^3+27 x+1$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-203}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.53.ad | $2$ | (not in LMFDB) |