Properties

Label 2-33600-1.1-c1-0-140
Degree $2$
Conductor $33600$
Sign $-1$
Analytic cond. $268.297$
Root an. cond. $16.3797$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s + 6·11-s − 4·13-s − 6·17-s + 2·19-s − 21-s − 27-s − 6·29-s + 10·31-s − 6·33-s + 2·37-s + 4·39-s − 6·41-s + 4·43-s + 49-s + 6·51-s − 12·53-s − 2·57-s − 14·61-s + 63-s + 4·67-s − 6·71-s + 4·73-s + 6·77-s + 16·79-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s + 1.80·11-s − 1.10·13-s − 1.45·17-s + 0.458·19-s − 0.218·21-s − 0.192·27-s − 1.11·29-s + 1.79·31-s − 1.04·33-s + 0.328·37-s + 0.640·39-s − 0.937·41-s + 0.609·43-s + 1/7·49-s + 0.840·51-s − 1.64·53-s − 0.264·57-s − 1.79·61-s + 0.125·63-s + 0.488·67-s − 0.712·71-s + 0.468·73-s + 0.683·77-s + 1.80·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33600\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(268.297\)
Root analytic conductor: \(16.3797\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 33600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 - T \)
good11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.13414256644215, −14.88238893894425, −14.16191579271802, −13.74610056642836, −13.20539693200989, −12.38655170949019, −12.05009508587890, −11.62302205683398, −11.10368365760069, −10.61774346397741, −9.814061268173627, −9.336441140020254, −9.029367896281939, −8.174752766869331, −7.580299892892183, −6.968576089087269, −6.369867972773065, −6.136472276457090, −5.025644782397572, −4.730911880731072, −4.119404709118497, −3.425889717262776, −2.462097622319795, −1.763773410984981, −1.020037317932297, 0, 1.020037317932297, 1.763773410984981, 2.462097622319795, 3.425889717262776, 4.119404709118497, 4.730911880731072, 5.025644782397572, 6.136472276457090, 6.369867972773065, 6.968576089087269, 7.580299892892183, 8.174752766869331, 9.029367896281939, 9.336441140020254, 9.814061268173627, 10.61774346397741, 11.10368365760069, 11.62302205683398, 12.05009508587890, 12.38655170949019, 13.20539693200989, 13.74610056642836, 14.16191579271802, 14.88238893894425, 15.13414256644215

Graph of the $Z$-function along the critical line