Properties

Label 2-309680-1.1-c1-0-32
Degree $2$
Conductor $309680$
Sign $-1$
Analytic cond. $2472.80$
Root an. cond. $49.7273$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 2·9-s − 3·11-s − 2·13-s − 15-s + 3·17-s − 19-s − 6·23-s + 25-s − 5·27-s − 6·29-s + 5·31-s − 3·33-s − 7·37-s − 2·39-s + 6·41-s + 43-s + 2·45-s + 3·47-s + 3·51-s − 9·53-s + 3·55-s − 57-s + 6·59-s − 8·61-s + 2·65-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 2/3·9-s − 0.904·11-s − 0.554·13-s − 0.258·15-s + 0.727·17-s − 0.229·19-s − 1.25·23-s + 1/5·25-s − 0.962·27-s − 1.11·29-s + 0.898·31-s − 0.522·33-s − 1.15·37-s − 0.320·39-s + 0.937·41-s + 0.152·43-s + 0.298·45-s + 0.437·47-s + 0.420·51-s − 1.23·53-s + 0.404·55-s − 0.132·57-s + 0.781·59-s − 1.02·61-s + 0.248·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 309680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 309680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(309680\)    =    \(2^{4} \cdot 5 \cdot 7^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(2472.80\)
Root analytic conductor: \(49.7273\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 309680,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
79 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.75180302988474, −12.51688491778347, −12.00123382904366, −11.49557420533166, −11.15469257674529, −10.53933099578769, −10.09250542163724, −9.766330711801862, −9.070822408342892, −8.798827226485166, −8.029441444381010, −7.959502598995963, −7.502608273765842, −6.986116251162065, −6.215068079845518, −5.827032133594971, −5.349661791591284, −4.800129949024821, −4.253721453447561, −3.590972061483674, −3.280308227069901, −2.592018847333583, −2.228390644623857, −1.582854368855556, −0.5884792905777664, 0, 0.5884792905777664, 1.582854368855556, 2.228390644623857, 2.592018847333583, 3.280308227069901, 3.590972061483674, 4.253721453447561, 4.800129949024821, 5.349661791591284, 5.827032133594971, 6.215068079845518, 6.986116251162065, 7.502608273765842, 7.959502598995963, 8.029441444381010, 8.798827226485166, 9.070822408342892, 9.766330711801862, 10.09250542163724, 10.53933099578769, 11.15469257674529, 11.49557420533166, 12.00123382904366, 12.51688491778347, 12.75180302988474

Graph of the $Z$-function along the critical line