Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 3 x + 89 x^{2}$ |
| Frobenius angles: | $\pm0.550826883153$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-347}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $5$ |
| Isomorphism classes: | 5 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $93$ | $8091$ | $704196$ | $62729523$ | $5584166493$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $93$ | $8091$ | $704196$ | $62729523$ | $5584166493$ | $496982101824$ | $44231322936117$ | $3936588769413603$ | $350356404880738404$ | $31181719929676098651$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which 0 are hyperelliptic):
- $y^2=x^3+55 x+76$
- $y^2=x^3+69 x+69$
- $y^2=x^3+42 x+37$
- $y^2=x^3+31 x+4$
- $y^2=x^3+16 x+48$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-347}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.89.ad | $2$ | (not in LMFDB) |