Properties

Label 2-309680-1.1-c1-0-19
Degree $2$
Conductor $309680$
Sign $1$
Analytic cond. $2472.80$
Root an. cond. $49.7273$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 5-s + 9-s + 4·11-s + 2·13-s + 2·15-s − 6·17-s + 4·19-s + 25-s − 4·27-s − 4·29-s − 8·31-s + 8·33-s + 8·37-s + 4·39-s + 2·41-s − 2·43-s + 45-s − 8·47-s − 12·51-s + 12·53-s + 4·55-s + 8·57-s − 10·59-s − 8·61-s + 2·65-s − 8·67-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s + 1/3·9-s + 1.20·11-s + 0.554·13-s + 0.516·15-s − 1.45·17-s + 0.917·19-s + 1/5·25-s − 0.769·27-s − 0.742·29-s − 1.43·31-s + 1.39·33-s + 1.31·37-s + 0.640·39-s + 0.312·41-s − 0.304·43-s + 0.149·45-s − 1.16·47-s − 1.68·51-s + 1.64·53-s + 0.539·55-s + 1.05·57-s − 1.30·59-s − 1.02·61-s + 0.248·65-s − 0.977·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 309680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 309680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(309680\)    =    \(2^{4} \cdot 5 \cdot 7^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(2472.80\)
Root analytic conductor: \(49.7273\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 309680,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.169607930\)
\(L(\frac12)\) \(\approx\) \(4.169607930\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
79 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.90536805361826, −12.26505257864536, −11.55594511434273, −11.38073110423000, −10.89436788415271, −10.34324390846535, −9.574413072301323, −9.262910325708734, −9.197848389849659, −8.596616908905775, −8.123617380506485, −7.640076310622030, −6.989823015352515, −6.781173969078080, −5.908922981746075, −5.843969271131617, −5.020495250787045, −4.332740319107082, −3.972046101230072, −3.455956440231368, −2.917915275243852, −2.401491480348277, −1.663782501055352, −1.495904165498593, −0.4664672845169670, 0.4664672845169670, 1.495904165498593, 1.663782501055352, 2.401491480348277, 2.917915275243852, 3.455956440231368, 3.972046101230072, 4.332740319107082, 5.020495250787045, 5.843969271131617, 5.908922981746075, 6.781173969078080, 6.989823015352515, 7.640076310622030, 8.123617380506485, 8.596616908905775, 9.197848389849659, 9.262910325708734, 9.574413072301323, 10.34324390846535, 10.89436788415271, 11.38073110423000, 11.55594511434273, 12.26505257864536, 12.90536805361826

Graph of the $Z$-function along the critical line