Properties

Label 2-300352-1.1-c1-0-42
Degree $2$
Conductor $300352$
Sign $-1$
Analytic cond. $2398.32$
Root an. cond. $48.9726$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 3·7-s − 2·9-s + 2·11-s + 13-s + 15-s − 3·17-s + 3·21-s − 4·23-s − 4·25-s + 5·27-s + 2·29-s + 4·31-s − 2·33-s + 3·35-s + 5·37-s − 39-s + 12·41-s + 7·43-s + 2·45-s + 9·47-s + 2·49-s + 3·51-s + 4·53-s − 2·55-s − 6·59-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 1.13·7-s − 2/3·9-s + 0.603·11-s + 0.277·13-s + 0.258·15-s − 0.727·17-s + 0.654·21-s − 0.834·23-s − 4/5·25-s + 0.962·27-s + 0.371·29-s + 0.718·31-s − 0.348·33-s + 0.507·35-s + 0.821·37-s − 0.160·39-s + 1.87·41-s + 1.06·43-s + 0.298·45-s + 1.31·47-s + 2/7·49-s + 0.420·51-s + 0.549·53-s − 0.269·55-s − 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 300352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(300352\)    =    \(2^{6} \cdot 13 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(2398.32\)
Root analytic conductor: \(48.9726\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 300352,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13 \( 1 - T \)
19 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + 3 T + p T^{2} \) 1.17.d
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.79857909382524, −12.42963121324381, −11.91497256580094, −11.59237884733221, −11.20933831422595, −10.59925258518140, −10.32987563050355, −9.579947154356144, −9.301156449646962, −8.886464038252333, −8.165159108018741, −7.970649807991953, −7.057676552824404, −6.933669745197003, −6.131229674743856, −5.891612951265093, −5.710611950927409, −4.659901240474571, −4.231135974599457, −3.932031688754640, −3.204052999940965, −2.648470542722564, −2.252938239918532, −1.201420838604381, −0.6224847692165643, 0, 0.6224847692165643, 1.201420838604381, 2.252938239918532, 2.648470542722564, 3.204052999940965, 3.932031688754640, 4.231135974599457, 4.659901240474571, 5.710611950927409, 5.891612951265093, 6.131229674743856, 6.933669745197003, 7.057676552824404, 7.970649807991953, 8.165159108018741, 8.886464038252333, 9.301156449646962, 9.579947154356144, 10.32987563050355, 10.59925258518140, 11.20933831422595, 11.59237884733221, 11.91497256580094, 12.42963121324381, 12.79857909382524

Graph of the $Z$-function along the critical line