Properties

Label 2-2940-1.1-c1-0-5
Degree $2$
Conductor $2940$
Sign $1$
Analytic cond. $23.4760$
Root an. cond. $4.84520$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 9-s + 2·11-s − 4·13-s − 15-s + 2·17-s + 2·23-s + 25-s − 27-s + 6·29-s + 4·31-s − 2·33-s − 10·37-s + 4·39-s − 2·41-s + 4·43-s + 45-s − 8·47-s − 2·51-s + 10·53-s + 2·55-s + 4·59-s + 8·61-s − 4·65-s + 8·67-s − 2·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 1/3·9-s + 0.603·11-s − 1.10·13-s − 0.258·15-s + 0.485·17-s + 0.417·23-s + 1/5·25-s − 0.192·27-s + 1.11·29-s + 0.718·31-s − 0.348·33-s − 1.64·37-s + 0.640·39-s − 0.312·41-s + 0.609·43-s + 0.149·45-s − 1.16·47-s − 0.280·51-s + 1.37·53-s + 0.269·55-s + 0.520·59-s + 1.02·61-s − 0.496·65-s + 0.977·67-s − 0.240·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2940\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(23.4760\)
Root analytic conductor: \(4.84520\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2940,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.614546281\)
\(L(\frac12)\) \(\approx\) \(1.614546281\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
good11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.766478863443302363408410975591, −8.021252076005015374509882583726, −6.90842479379130569242180062632, −6.69405569392998382511054784833, −5.54755934934665382318998592213, −5.05253561513726568937694635743, −4.14381992805715318785313309926, −3.05452872527634701154164130670, −2.00146175035894616251096190421, −0.814581355796936259209215958798, 0.814581355796936259209215958798, 2.00146175035894616251096190421, 3.05452872527634701154164130670, 4.14381992805715318785313309926, 5.05253561513726568937694635743, 5.54755934934665382318998592213, 6.69405569392998382511054784833, 6.90842479379130569242180062632, 8.021252076005015374509882583726, 8.766478863443302363408410975591

Graph of the $Z$-function along the critical line